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Abstract
The interaction between vegetation and fluvial processes leaves many possibilities for research. Since the
publication in the early 1960s of the US Geological Survey Professional Papers by R.S. Sigafoos, numerous
contributions in paleohydrology and riparian ecology have deepened the interaction between vegetation and
fluvial geomorphology. In this article, we briefly review the impact of Sigafoos’ research in past and current
scientific developments. We highlight the importance of the botanical evidence described by Sigafoos and the
need for further work in this research line.
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1 Introduction

The application of tree rings in hydrological

science started in the early decades of the

20th century, when Hardman and Reil (1936)

reconstructed past annual streamflow of the

Truckee River (Nevada, USA) based on the

existing correlation between ring widths of

Ponderosa pine and river flow records. But

tree-ring analysis was not used to date specific

paleoflood events and fluvial sediment land-

forms until the early 1960s. In his seminal stud-

ies, Robert S. Sigafoos (1961, 1964) described,

for the first time, botanical evidence of past

floods events in the Potomac River of

Washington, DC (USA) and highlighted its

utility in paleohydrologic analysis to explore

the hydrologic history of rivers (Leopold,

1953). Beyond the suggested economic value

of botanical evidence (i.e. to improve flood-

frequency analysis in poorly ungauged rivers;

p. A32), research conducted by Sigafoos

(1964) enabled the ecological interpretation

of interactions between riparian vegetation and

fluvial geomorphology, stimulating further

research in the field (e.g. Hupp and Oster-

kamp, 1996; Osterkamp et al., 2012; Stoffel

and Wilford, 2012).
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Since their publication, the Sigafoos papers

(1961, 1964) have been cited more than 313

times, and have especially been widely cited

since the 1990s (84% of citations; Google Scho-

lar, accessed 08 August 2014). Our purpose here

is twofold: to examine how the novel research

conducted by Sigafoos, published in two United

States Geological Survey (USGS) Professional

Papers in 1961 and 1964, led to the subsequent

development of standard dating procedures in

tree-ring-based paleoflood research; and how

his work has contributed to the definition of

conceptual models of riparian vegetation and

fluvial geomorphology interaction.

II The significance of botanical
evidence of floods and relationship
between tree establishment and
fluvial geomorphology

Working for the USGS in the late 1950s, bota-

nist Robert S. Sigafoos focused his applied

research on the interaction between vegetation

and fluvial geomorphology. He was well aware

of the problem of the lack of hydrologic data

necessary for the design of reliable hydraulic

structures on rivers. Therefore, in agreement

with his colleague Leopold (1953), he under-

stood the technical and economic needs for

obtaining information on past flood events from

indirect evidence.

Consequently, in his initial publication on

this field, Sigafoos (1961) examined the rela-

tionship between vegetation patterns and the

frequency and duration of flooding. He per-

formed a quantitative study along the Potomac

River to analyse differences in the vegetation

before and after flood events that had occurred

early in 1961. His observations on damaged

riparian trees allowed him to reinforce the

hypotheses about the interrelationship between

tree species and floods. He concluded that trees

were not always killed by floods. Instead, he

suggested that some tree species presented a

major adaptability to growth on frequently

flooded floodplain. He concluded that the

establishment of new seeds on floodplains was

dependent on fluvial conditions (as a driver to

supply viable seeds on favourable beds of fresh

mineral soil) and favourable environment con-

dition (both climate and subsequent hydrologic

regime). Finally, he suggested that floods were

the cause of different bottomland-vegetation

banded patterns along the Potomac River

which clearly were linked with the past flood

activity and fluvial dynamics (see Figures 1

and 2).

These observations were the basis for carry-

ing out his study on botanical evidence of past

floods and their physiological effects on trees

a few years later (Sigafoos, 1964). Although

some authors had previously described the

harmful effects of floating ice chunks colliding

with trees (e.g. Cribbs, 1917; Lindsey et al.,

1961), Sigafoos related for the first time several

lines of botanical evidence of a flood and

deposition event with flow records. Specifi-

cally, the main contributions were: i) improving

interpretation of flood-inflicted damages on

trees (i.e. scar on stems) in relation to their

hydrologic origin and physiological effects on

trees as a basis for dendrochronological dating;

ii) the description of the steps involved in the

generation of multi-sprouted flood-felled trees

as evidence of different floods events responsi-

ble for periodic crown losses; iii) reporting the

utility of trees buried by alluvium for dating

flood events by dating burial-induced anatomi-

cal changes in the stem and the generation of

adventitious roots that allowed an estimate of

the amount of alluvium deposited; and, iv)

illustrating the value of relating trees with

flood-exposed roots to erosional phases during

flood events. These observations formed the basis

of dendrogeomorphology (Alestalo, 1971; Shro-

der, 1978; Stoffel and Corona, 2014; see Butler

and Stoffel, 2013 for a historical interpretation)

and today still represent a reliable source of infor-

mation for paleo-reconstructions in mountain

areas (Stoffel et al., 2010) (see Figure 3).
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III The impact ofSigafoos’s research
on subsequent development

The observations conducted by Sigafoos (1961,

1964) were quickly accepted. Therefore, their

influence on science can be temporally tracked

by distinguishing: i) those subsequent contribu-

tions focused on dating past flood events (i.e.

paleohydrology), and ii) those research efforts

aimed at the analysis of the interaction between

riparian forests and fluvial geomorphology.

In the paleohydrology field, several research-

ers understood the potential of this new source of

information for documenting past flood history

(Harrison and Reid, 1967; Helly and LaMarche,

1973; Phipps, 1970). Since the formal founda-

tion of dendrogeomorphology (Alestalo, 1971;

Shroder, 1978, 1980) and paleoflood hydrology

(Kochel and Baker, 1982; Baker, 1987), the use

of botanical evidence was widely spread in

North America. Yanosky (1983, 1984) picked

up the baton and extended the anatomical studies

of Sigafoos on Fraxinus species affected by

floods in the Potomac River, analyzing the ana-

tomical abnormalities between earlywood and

latewood of annual tree rings which could be

Figure 1. Left: R. S. Sigafoos examining an Ash sprout growing from tilted stem due to flood in 1928; Right:
R.S. Sigafoos measuring the diameter of an Alder sprout growing from the parent stem knocked over in 1956
(locations: Potomac River, Scott Run, Virginia). Pictures originally published as Figures 25 and 26 in US
Geological Survey Professional paper 485-A, 1964 (available resources from: US Geological Survey,
Department of the Interior/USGS).

Figure 2. R.S. Sigafoos in the field employing an
increment borer in order to date past geomorphic
events. Credit: US Geological Survey, Department of
the Interior, US Geological Survey.
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used for more precise dating of event occurrence

(i.e. for identifying flood events with intra-annual

precision). Contemporaneously, Bryan and Hupp

(1984) studied adventitious roots to report episo-

dic deposition events related to floods.

The influences of Sigafoos were also present

on developments conducted during the 1990s

on: i) understanding the anatomical response

upon affected trees by floods; ii) reporting

flood-chronologies and understanding their cli-

mate and land use controls; and iii) using scar

height for flood-magnitude estimation (see

reviews in Stoffel and Wilford, 2012). The wide

acceptance and extensive application of proce-

dures described by Sigafoos (1964) have moti-

vated others to extend his initial wood analysis

of buried trees to other affected tree species to

improve the reliability of dating procedures by

analyzing the 3D anatomical signals related

with wounded trees (Arbellay et al., 2012; Stof-

fel and Klinkmüller, 2013), buried trees (Kogel-

nig et al., 2013) and persistently flooded trees

(Wertz et al., 2013). These updated wood anat-

omy observations from those carried out by

Sigafoos (1964), and later on by Yanosky

(1983), reflect the current interest in using tree

rings to reconstruct flood histories in poorly or

ungauged rivers (St George and Nielsen, 2003).

However, beyond the interest of flood dating

using botanical evidence, the early relations

between scar height and flow discharge observed

by Sigafoos (1964) provided the incentive for

subsequent studies performed in other environ-

ments to determine their reliability to be used as

paleostage indicators (e.g. Gottesfeld, 1996). This

has allowed the creation of flood-magnitude esti-

mates of extreme event (Ballesteros-Cánovas

et al., 2011a), and has consequently improved

the flood-frequency for risk assessment (Bal-

lesteros- Cánovas et al., 2011b).

Concerning the interaction between riparian

forest and fluvial geomorphology, there is no

doubt that the observations described by Siga-

foos (1961, 1964) in the Potomac River resulted

in subsequent contribution on floodplain ecol-

ogy. After its publication, several authors used

the conceptual models based on the establish-

ment of trees in the floodplain in relation to

flow regimen to describe the floodplain (Keller

and Swanson, 1979) and meander formation

(Hickin, 1974; Nanson and Beach, 1977). Later,

Osterkamp and Hupp (1984), and Hupp and

Figure 3. A) Riparian vegetation and tilted trees with exposed roots outside Toronto, Ontario; B) Aerial
view of damages on vegetation due to intense flash flood event in Venero Claro, Spain; C) Example of multi-
spruced Alder growing in the floodplain of the Alberche river, Spain (Credit: Andres Dı́ez-Herrero).
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Osterkamp (1985), confirmed that the vegeta-

tion bands observed by Sigafoos (1961, 1964)

on the Potomac River were related to bankfull,

floodplain and terrace levels in a classical river

cross profile. This concept was then updated to

provide a dynamic channel-evolution model

based on five stages of adjustment where chan-

nel incision, erosion and aggradation phases

were related with tree establishment (Hupp,

1992). Throughout a comparative analysis in

different fluvial environments, Hupp and Oster-

kamp (1996), explained changes in vegetation

patterns with diverse causes, although all of

them were related to the hydrologic regimen.

Nowadays, riparian forests are considered a key

component of river landscapes. The current

state-of-knowledge has demonstrated the inter-

action of riparian forests with a broad spectrum

of hydrogeomorphic processes, illustrated how

they help in regulating the water and soil budget

and shown the ecological value of river corri-

dors (Osterkamp and Hupp, 2010; Osterkamp

et al., 2012: Simon et al., 2004).

IV The legacy of Sigafoos’ studies

Although botanical evidence has not been

developed in the same fashion as other ‘geologi-

cal’ evidence used in paleohydrology (e.g.

slackwater deposits; Baker, 2008), the potential

of this evidence has been repeatedly demon-

strated. Over the last decade, several new appli-

cations using tree rings have been introduced in

paleohydrology. New advances in the under-

standing of botanical evidence contained in

heretofore un-studied species of riparian trees

(Arbellay et al., 2012; Stoffel et al., 2012; Wertz

et al., 2013), and their utility for flood-

magnitude reconstruction in combination with

numerical models (Ballesteros-Cánovas et al.,

2011a; Ballesteros-Cánovas et al., 2014) might

ensure greater applicability and worldwide

adoption. Therefore, botanical evidence could

be greatly advantageous especially in mountain

areas, where the lack of data and the difficulty of

locating slackwater deposits have so far largely

precluded the spatio-temporal reconstruction of

past hydrogeomorphic activity. Similarly,

research in riparian corridor geomorphology

and river flows has also undergone considerable

development (Naiman et al., 2010). Retrospec-

tive analysis of vegetation changes and longer

flow records have allowed demonstration of the

impact of vegetation changes on magnitude and

variability of river flows as well as on sediment

retention processes (Marston et al., 1995; Simon

and Rinaldi, 2000; Garófano-Gómez et al.,

2012). Therefore, the idea that good ecological

status could improve river ecosystems, and con-

sequently provide benefits to societies, has now

become a compulsory task for river managers

(e.g. European Water Framework Directive

WFD 2000/60/EC). The short historical review

of the impact of Sigafoos’ research on science

presented here also illustrates the importance

of continuing and developing those research

lines into the future.
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