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As the evidence for human induced climate change becomes clearer, so too does the realization that its effects
will have impacts on numerous environmental and socio-economic systems. Mountains are recognized as very
sensitive physical environments with populations whose histories and current social positions often strain
their capacity to accommodate intense and rapid changes to their resource base. It is thus essential to assess
the impacts of a changing climate, focusing on the quantity of water originating inmountain regions, particularly
where snow and ice melt represent a large streamflow component as well as a local resource in terms of fresh-
water supply, hydropower generation, or irrigation. Increasing evidence of glacier retreat, permafrost degrada-
tion and reduced mountain snowpack has been observed in many regions, thereby suggesting that climate
change may seriously affect streamflow regimes. These changes could in turn threaten the availability of water
resources for many environmental and economic systems, and exacerbate a range of natural hazards that
would compound these impacts. As a consequence, socio-economic structures of downstream living populations
would be also impacted, calling for better preparedness and strategies to avoid conflicts of interest between
water-dependent economic actors. This paper is thus an introduction to the Special Issue of this journal dedicated
to the EuropeanUnion Seventh FrameworkProgram(EU-FP7) project ACQWA (Assessing Climate Impacts on the
Quantity andQuality ofWAter), amajor Europeannetwork of scientists thatwas coordinated by theUniversity of
Geneva from2008 to 2014. The goal of ACQWAhas been to address a number of these issues and propose a range
of solutions for adaptation to change and to help improve water governance in regions where quantity, season-
ality, and perhaps quality of water may substantially change in coming decades.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The importance of mountain regions as a provider of numerous eco-
system services was recognized at the United Nations Conference on
Environment andDevelopment (Rio de Janeiro, Brazil, 1992);mountain
regions were included under Agenda 21 of the UNCED conference,
whichmentions under its Article 13 (UN, 1992) that “Mountains are im-
portant sources of water, energy, minerals, forest and agricultural products
and areas of recreation. They are storehouses of biological diversity, home
to endangered species and an essential part of the global ecosystem. From
the Andes to the Himalayas, and from Southeast Asia to East and Central
Africa, there is serious ecological deterioration. Most mountain areas are
experiencing environmental degradation.”

Mountains are today unanimously recognized as “sentinels for envi-
ronmental change”, in the sense that they exhibit dynamics in physical
and biological systems that are often more readily identifiable than in
other geographical entities of the globe (Beniston, 2003; Loarie et al.,
2009; Engler et al., 2011; Gobiet et al., 2014). The study of cryospheric,
hydrologic, geomorphic and socio-economic change in sensitive
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mountain regions enables to further our understanding of how an im-
portant part of the terrestrial environment responds to, is affected by,
and may adapt to rapid and sustained changes in temperature and pre-
cipitation regimes (Beniston, 2009; Barriopedro et al., 2011; IPCC, 2013).

Among these visible impacts, changes in glacier length and volume
are perhaps the most spectacular manifestations of climate impacts in
mountains; currently and with few exceptions, mountain glaciers
from the equatorial to the high latitudes experience glacier shrinkage
(Paul, 2011; Bolch et al., 2012; Sorg et al., 2012; Pellicciotti et al., this
issue-a), highlighting the fact that this is a global phenomenon. Shifts
inmountain snow-pack behavior in the past decades have also been ob-
served, with collateral impacts on the timing of snow-pack melting and
thus of surface runoff (e.g., Stewart, 2009; Beniston, 2010, 2012; Rohrer
et al., 2013), and also an influence on the start of the vegetation period
for certainmountain plant species (Keller et al., 2005;Moser et al., 2009;
Beier et al., 2012; Gottfried et al., 2012).

More subtle changes are reported for mountain ecosystems, in part
because of the longer timescales involved in biological systems com-
pared to mountain cryospheric systems, for example, and also because
certain species are more adaptable than others (Dubuis et al., 2013),
thus resulting in greater difficulties in attributing cause-to-effect rela-
tionships of climate change. In mountains, the transitions between
biological entities and vegetation (ecotones) can occur over short
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distances, contrarily to what takes place in lowland plains (e.g., Gosz,
1993). Many changes in vegetation patterns related to sustained shifts
in environmental conditions can be identified in these ecotone transi-
tion zones, as shown for example by Gottfried et al. (2012) at the
boundary between high alpine vegetation and the snowline. Invasive
speciesmoving into and upwards from lowland regions are also an indi-
cator of change, since the endemic nature ofmany upland ecosystems is
related to the relative isolation of mountains that can be considered as
islands surrounded by lowlands (Hedberg, 1964), and any new species
entering into a mountain region would be indicative of some form of
disruption.

Finally, mountains are also the locale for numerous socio-economic
activities, in particular tourism, agriculture, industry, mining, and ener-
gy (hydropower). These sectors are all sensitive to climate change, since
climate exerts the essential controls on the availability of snow for ski
tourism (e.g., Uhlmann et al., 2009; Morrison and Pickering, 2013), or
of water for mountain agriculture, hydropower, and for mineral exploi-
tation (e.g., Finger et al., 2012;World Bank, 2013; Fuhrer et al., this vol-
ume; Gaudard et al., this volume)), for example. However, it should be
emphasized here that low priorities to sustainable land-use and natural
resource management in many mountain regions in the world imply
that changes in forest resources, mountain agriculture and water
resources are driven not only by environmental change but also by eco-
nomic and demographic factors (Beniston, 2003).

It is in this context of rapid dynamics of change in mountain regions
that the ACQWAproject (Assessing Climate impacts on the Quantity and
quality of WAter; Beniston et al., 2011, 2012) was constructed, in re-
sponse to the first call for climate-relevant projects under the European
Union Framework Program (EU-FP7) and coordinated by the University
of Geneva (01.10.2008–31.03.2014). It has been one of the largest
climate-related projects coordinated by Switzerland under FP7, both in
terms of funding and the number of partner institutions, i.e., 30 in 10
countries and three continents for a total of 37 different research, public,
or private research entities representing over 100 scientists.

The overarching goal of the project was to assess the vulnerability of
water resources in mountain regions where snow and ice represent a
major input of water for rivers originating in mountains, andwhere de-
clining snow amounts and receding glaciers in a warmer climate are
likely to have profound impacts on hydrological regimes. Future shifts
in temperature and precipitation patterns, and changes in the behavior
of snow and ice in many mountain regions will change the quantity,
Fig. 1. Structure of the ACQWA pro
seasonality, and possibly also the quality of water originating in moun-
tains and uplands (Sorg et al., 2012; Immerzeel et al., 2013; Collins et al.,
2013). As a result, changing water availability will affect both upland
and populated lowland areas (Hill et al., in press-a,b; Sorg et al.,
2014). The challenge of the ACQWA project has thus been to estimate
as accurately as possible future changes in water availability, and the
impacts these changesmay impose on a range of water-dependent eco-
nomic systems (Fig. 1).

The flow diagram in Fig. 1 illustrates the broad structure of the
ACQWA project. Current generation of state-of-the-art models (e.g.,
Themessl et al., 2010; Cane et al., 2013; Heinrich et al., 2013; Gobiet
et al., 2014) was applied to various interacting elements of the climate
system, that include regional atmospheric processes in complex terrain,
snow and ice, vegetation, and hydrology in order to project shifts in
water regimes in a warmer climate in mountain regions as diverse as
the European Alps, the Central Andes of Chile and Argentina, and the
mountains of Central Asia (Kyrgyzstan). Observations, targeted models,
and methodologies from both the social and the natural sciences were
then applied to conduct analyses of climate impacts on sectors such as
tourism, agriculture and hydropower which could be strongly influ-
enced by changing water regimes. Because these economic sectors
and other water-dependent industries may well enter experience con-
flicts of interests and rivalries if water is no longer available in sufficient
quantities or at the right time of the year, a further goal of the ACQWA
project was thus to define a portfolio of proposals to pave the way for
appropriate adaptation strategies and improved water governance
(Hill and Allan, in press; Hill and Engle, 2013; Hill et al., in press-b).
These are designed to help alleviate the more negative impacts of
climatic change on water resources and to reduce the risks of conflict
between the economic actors most affected by these changes.

The aim of this introductory paper to the Special Issue of Science of
the Total Environment is not only to summarize the principal highlights
of the ACQWA project, but also to emphasize some of the elements of
inter-comparison between this project and other research initiatives
that in recent years have also been dedicated towater and climate issues.

2. The ACQWA case-study regions

Fig. 2 shows themain case-study areas investigated in the context of
the ACQWAproject. The Rhone and Po river basins in the European Alps
have been used as a common “test ground” for model investigations,
ject and its main components.
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Fig. 2. The principal ACQWA case-study regions: the Swiss Rhone and Italian Po basins, the Chilean Aconcagua basin, and the Kyrgyz catchments of Central Asia.
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where the different methodological approaches have converged to the
basin scale through appropriate up- or down-scaling techniques. Both
basins represent ideal case-study areas, as they comprise all the ele-
ments of the natural environment that have been modeled (snow, ice,
vegetation, hydrology) and have a wealth of data to enable models to
be validated. At the same time, these are highly regulated watersheds,
where economic activities related to hydropower generation, irrigated
agriculture, and tourism take place in the context of a climate that is
at the borderline between Mediterranean and Continental, and are
therefore particularly vulnerable to climatic change (Beniston, 2003).
The boundaries of the Rhone catchment study-area include the alpine
segment, running from the Rhone Glacier in Central Switzerland to
Lake Geneva. The boundaries of the Po case-study area used in the
ACQWA project do not extend as far as the Adriatic Sea, for reasons of
data access and hydrological model constraints. The investigations
have thus focused more on the flows from the Alps of Piemonte and
Valle d'Aosta, with the “ACQWA Po” boundary that is limited to Cremo-
na, on the Po River south ofMilan and thewestern segment of the basin
(Coppola et al., this volume; Fatichi et al., this volume). Regional climate
model results, however, cover the entire basin as illustrated in the map
in Fig. 2.

Some of the methodologies developed in the intensive investiga-
tions of the European alpine catchments have been applied to the Acon-
cagua Basin in Chile, where receding glaciers already today pose a
genuine threat to water availability (Pellicciotti et al., 2014). Investigat-
ing the coping strategies of Chilean economic sectors affected by chang-
es in the quantity and seasonality of water resources can help highlight
the types of problems that could arise in the Alps in coming decades
(Hill et al., in press-a). In Central Asia (Kyrgyzstan), on the other hand,
the same processes of ice-mass wasting in the headwaters of the Syr
Darya or Amu Darya rivers involve much larger glaciers (Sorg et al.,
Summer
(JJA)

Winter
(DJF)

Fig. 3. Alpine-scale precipitation chang
Source: A. Gobiet, Univer
2012). During the 21st century, the meltwaters from the Tien Shan
could potentially represent a source of economic opportunity, for exam-
ple through the development of hydropower as a source of
foreign revenue, but also a risk in view of the political instability and
rivalries between different independent states of former USSR (Sorg
et al., 2014).

Other research-specific case-study areas comprise the Aragón Basin
in Spain for interdisciplinary investigations pertaining to agriculture
and energy in a context of changing land-use and climate (Lopez-
Moreno et al., 2014); and French Pyrenean watersheds for aquatic eco-
system studies in a hydrology, habitat and biota framework (Khamis
et al., 2013a, 2014). These are located in the Cauterets region in the
vicinity of the French Pyrenees National Park. By analogy with the
other non-Alpine case study regions, some of the issues addressed in
the Pyrenees in today's world are likely to be those that will arise in
the European Alps in tomorrow's world.

3. Climate change in the ACQWA case-study regions

The high-resolution simulations carried out within the EU-FP6
ENSEMBLESproject (www.ensembles-eu.org) formed thebasis for the fo-
cused modeling work and climate impacts assessments within ACQWA.
Two principal simulations were chosen from the ENSEMBLES multi-
model dataset (namely ICTP_RegCM and MPI_REMO, both driven by
ECHAM5-r3) and used by all teams. In addition, several impacts studies
used the entire ENSEMBLES dataset in order to identify more completely
climate-induced uncertainties. The IPCC (2001) A1B greenhouse-gas sce-
nario through to the mid-21st century was applied across all the individ-
ual case studies to have a common scenario referenced period for all
projections and impacts studies. The 2050s was set as the principal time
horizon for the project, as this is a period in the future which is not too
e in winter and summer by 2050.
sity of Graz, Austria.

http://www.ensembles-eu.org


Fig. 4. A pseudo-3D representation of the retreat of the Rhone Glacier by 2050 (Fatichi et al., 2014).
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far removed from the time-scales typical of forward economic planning
and decision-making. Using the ENSEMBLES simulations from a set of
22high resolution regional climatemodels (RCMs), climate data in the re-
gions of interest was compiled up to 2050. The ENSEMBLES RCMs were
used with a horizontal grid spacing of 25 km, and the lateral boundary
conditions were provided by eight different global climate models
(GCMs). The restriction of using only the A1B emission scenario, rather
Fig. 5. Changes in discharge in the Po (left) and Rhone (right) catchments between the refe
than other scenarios or a range of emission futures, is of minor impor-
tance since theuncertainty due to the choice of emission scenario remains
fairly small in the first half of the 21st century (Gobiet et al., 2014).

Results by 2050 using themulti-model mean climate change signals
exhibit stronger warming along the Alpine ridge, especially in summer.
The high sensitivity of theAlps becomes evenmore evident in the rather
small Rhone case-study region located in the Valais region of south-
rence climate 1961–1990 and the scenario climate 2021–2050 (Coppola et al., 2014).

image of Fig.�5
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central Switzerland, with projected median warming over 1.5 °C in
winter (DJF) and close to 2 °C in summer (JJA). Warming is projected
by all models of the dataset and for all seasons; the uncertainty of the
projected changes is larger in summer and autumn than in winter and
spring (Gobiet et al., 2014). In-depth analyses of this data suggest that
the choice of the GCM that drives the RCM initial and boundary condi-
tions has by far the largest effect on the total uncertainty, contributing
more than 75% to the overall variance in most cases (Im et al., 2010a,
b; Deser et al., 2012; Gobiet et al., 2014).

The massive presence of the Alpine ridge as a dividing feature be-
tweenMediterranean and Atlantic or Continental climates clearly influ-
ences the spatial distribution of precipitation and the projections of
change, as seen in Fig. 3. In the Rhone catchment, the summer decrease
and winter increase are small through to 2050, although these changes
maywell amplify into the second half of the 21st century as shown by a
number of earlier studies (e.g., Beniston, 2006). In the Po catchment,
temperature and precipitation changes are somewhat more marked
than in the Rhone catchment to the north. Between the decades
2001–2010 and 2041–2050, increases of temperature according to dif-
ferent RCM simulations range between 2 and 3 °C, and the variation of
mean annual precipitation ranges from 1 to 10%, mainly in the winter
and early spring period. Accelerated melting periods, earlier in the
year, and likely increases in summertime evapotranspiration will inevi-
tably counter the influence of the larger amounts of summer precipita-
tion on river discharge that are projected for the region.

In the Andean zone, of central Chile, the Aconcagua catchment is
projected to experience warmer winters and decreasing precipitation
which, as in other mountain regions, will affect the behavior of the
mountain snowpack and lead to changes in the timing of snow and gla-
cier melt (Pellicciotti et al., 2014). In the Central Asian republic of
Kyrgyzstan, available climate simulations project by 2050 decreases in
summer precipitation by around 5% and increases in winter precipita-
tion around 8%. Temperature increases of between 2.5 and 4.5 °C are
projected for all seasons in the region. Overall, extreme events will
tend to increase, in particular at both ends of the moisture spectrum
with more summer droughts and winter or spring flood events (Sorg
et al., 2012, 2014).

4. Impacts of a changing climate on natural and socio-
economic systems

Changes in snow, ice andwaterwill have impacts on natural systems
(such as forests) and managed systems (such as hydropower and
agriculture).

4.1. Changes in mountain cryosphere and hydrological systems

Alpine snow cover will decline due to temperature increases that
will change the liquid-to-solid precipitation ratio, with higher risks of
winter rainfall rather than snow-fall particularly at mid-latitude loca-
tions in the range from 1000 to 2000 m asl (Dedieu et al., 2014). The
speed at which individual glacier retreat may be reduced at locations
where glaciers become confined to high elevations characterized by
high totals of accumulated winter snow fall. State of the art, continuous
mass balancemodels project a high variability of progressive glacier re-
treat for 2001–2050 and a related ice volume reduction for a number of
alpine glaciers. For the Rhone Glacier, source of the Rhone River, Fig. 4
shows the progressive decade-by-decade retreat of the ice until 2050
(Fatichi et al., 2014).

Numericalmodel results, that include the intricacies of water flow in
drainage networks beneath the glacier base, suggest that the stability of
a number of alpine glaciers could be altered significantly by atmospher-
ic warming trends (e.g., Faillettaz et al., 2012; Worni et al., 2013).
Debris-free glaciers are projected to have a faster negativemass balance
in comparison to those covered by a thick layer of debris. Higher spring
and summer melting occurs in 2031–2050. Overall, the contribution of
ice melt to runoff in glacierized catchments will gradually disappear as
the size of the glaciers dwindles.

In the Alpine region, the application of distributed hydrological
models emphasizes the fact that the impacts of climatic change on the
hydrological cycle will probably be less marked in the higher mountain
domains (e.g., for the upper part of theRhone catchment) than for lower
elevations (e.g., on the Italian side of the Alps and in the Padan Plain of
the Po catchment). Fig. 5 illustrates the contrasting shifts in water
amount in the two catchments according to elevation and distance
from the mountains (Coppola et al., 2014).

RCM-projected impacts of climate change on flowduration curves of
mountain tributaries for the Po River exhibit a general decrease of dis-
charge for low flows and an increase in discharge for high flows. The de-
crease of flow discharge is estimated to be more than 50% of the
seasonal average for a large portion of the drainage network. In the
Rhone catchment, stochastic climate variability is a fundamental source
of uncertainty that is often larger than the magnitude of projected cli-
mate change. In a highly managed catchment like the Swiss part of
the Rhone River, changes in the natural hydrological regime imposed
by the existing hydraulic infrastructure are larger than those imposed
by the magnitude of climate change expected by 2050 (Finger et al.,
2012; Fatichi et al., 2014; Gaudard et al., 2014).

In all the mountain regions studied, climate change impacts on
stream flow are elevation-dependant, with a sharp reduction at high el-
evations due to the missing contribution of water from ice melt and a
damped effect downstream, with a decrease of water availability in
summer and an increase of discharge in winter (Fatichi et al., 2013).

4.2. Mountain forests

Mountain forests are considered to provide a number of services; be-
yond their purely aesthetic value, thewood they provide can be used for
various purposes (Leuzinger et al., 2011). Above all, however, they act as
natural protection against rockfalls and other slope instabilities (Stoffel
et al., 2006), and in addition filter the water that runs along the surface
or infiltrates into the soils. Any changes in the distribution of mountain
forests could change the protective role that they play against natural
hazards (Stoffel et al., 2005, Gottfried et al., 2011). In the ACQWA
project, it was found using the LPJ-GUESS biosphere model that the
sensitivity of Alpine forest ecosystem services to a 2 °C warmer world
depends heavily on the current climatic conditions of a region, the
strong elevation gradients within a region, and the specific ecosystem
services in question (Wolf et al., 2012). These include carbon storage,
modulation of surface runoff, timber production, biological diversity,
and protection fromnatural hazards. At higher elevations and in regions
that are initially cool and moist, simulations suggest that forest ecosys-
tem services may be comparatively resistant to a 2 °C temperature rise.
At low and intermediate elevations large negative impactsmay occur in
dryer–warmer regions, where relatively small climatic shifts could re-
sult in negative drought-related impacts on forest ecosystem services.
Some services such as protection against rockfall and avalanches are
seen to be sensitive to a sustained 2 °C change in mean temperature,
but other services such as carbon storage remain reasonably resistant.
The study concludes that a 2 °C increase of global mean temperature,
which is the “EU Policy” threshold to which a number of other countries
such as Switzerland adhere to, cannot be seen as a universally “safe”
boundary for the maintenance of mountain forest ecosystem services
(Elkin et al., 2013).

4.3. Aquatic ecosystems

Mountain lakes are often considered to be sentinels of change, because
they are located in sensitive or extreme environments, where small shifts
in environmental conditions or direct human interference can result in
rapid dynamics in the functioning of aquatic ecosystems (Tiberti et al.,
2013). Increased temperature, seasonal precipitation shifts, reduced
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ice cover and ice melt are likely to have significant implications for
aquatic biodiversity, in particular increased abundance of larger preda-
tor species, increased primary and secondary productivity, increased
local diversity, and decreased regional diversity. Case studies from the
Pyrenees and the Swiss Alps highlight that although climate signals
are broadly similar, the predicted responses that relate hydrology
to habitat to ecology are varied and are a function of cryospheric
river flow buffering potential, i.e., glacier size (Khamis et al., 2014,
submitted for publication). In order to enhance conservation of moun-
tain lake ecosystems, three key paradigm shifts are proposed; these in-
volve moving from simply focusing on direct and point source impacts
to diffuse threats, to recognize flexibility and dynamism in the system,
rather than aiming to control static ecosystems, and finally to improve
integration and synergies across different policy frameworks that im-
pact conservation (Khamis et al., 2013b).

4.4. Agriculture

In many of the ACQWA case-study regions, problems for agricultural
yields by 2050 are likely to be linkedmore to high temperatures than to
increased droughts (Fuhrer et al., 2014); elevated temperatures, partic-
ularly if they are sustained over time, are known to have negative effects
on both crop and livestock production (Smith et al., 2012). With in-
creasing temperatures, water consumption through the increases in
crop evapotranspiration is likely to lead to additional irrigation de-
mands (for example 10% or more in the Swiss segment of the Rhone
Valley) in order to maintain optimal yields (Fuhrer et al., 2014). High
demand for water for irrigation will in turn place additional pressure
on small rivers in catchments with little or no water supply from gla-
ciers (Finger et al., 2011; Fatichi et al., 2014), while larger water sources
in valley may not be subject to the same extent of variability. In drier
areas with low summer precipitation (e.g., in the Po Basin), potential
water shortages for crop growth would be likely, requiring more
irrigation to maintain optimal crop yields. The amount of water
for irrigation purposes could increase by as much as 35%. Improved
water management should include both regulations regarding the allo-
cation of water to different users of the same source, installation and
management of reservoirs (Gaudard et al., this volume), and technical
measures to improve the efficiency of irrigation by avoiding losses of
distribution systems, evaporative losses, and excessive runoff due to
over-application of water.

4.5. Hydropower

In terms of hydropower, the changes in the behavior of snow and ice
in a warmer climate will affect the management of hydropower plants
and dams (Finger et al., 2012). As these are particularly dependent on
snow and ice melt for their primary supply of water, the variability in
glacier retreat patterns, that are dependent on the size, aspect, and
shape, of the glacier, will be a strong determinant for dams. The reduc-
tion in surface water flows and seasonal shifts in water availability that
model studies suggest, i.e., more availability of water in the earlier
months of the year and a longer summer period with lower run-off or
drought, will impact hydropower. Climate change may also indirectly
affect electricity loads because energy consumption varieswith air tem-
perature. Storage-hydropower plants are a more flexible technology
withmodifiable production periods,whose revenues are less vulnerable
to shifts in seasonality than run-of-river power plants. While a more
uniform contribution from runoff might be an advantage for reservoir
management, a decrease in total annual runoff expected for reservoirs
fed by icemelt is likely to negatively affect production.While the chang-
es to the physical determinants ofwater availability for hydropower op-
eration are important, technological, economic and behavioral changes
in the electricity system are, however, expected to exert an even stron-
ger impact than climatic change, at least in the first half of the 21st cen-
tury (Gaudard et al., 2014).
4.6. Extreme events

Changes in air temperature and precipitation are considered likely to
have a range of secondary effects, including on the subsurface tempera-
ture and three-dimensional distribution of permafrost as well as on the
stability of slopes (Stoffel and Huggel, 2012). However, while there is a
theoretical understanding for increased mass-movement activity as a
result of predicted climate change in mountain environments, changes
in activity are difficult to detect in observational records. In addition, un-
certainty remains considerable as a result of error margins inherent in
scenario-driven global predictions, and due to the lack of spatial resolu-
tion of downscaled projections (Crozier, 2010).

For the southern valleys of the Swiss Rhone valley, indications exist
that changes in the frequency of high-elevation debris flows from per-
mafrost environments might not be affected significantly by climatic
changes, but that the overall magnitude of debris flows could be larger
due to larger amounts of sediment delivered to the channels and an in-
crease in extreme precipitation events (Stoffel et al., in press). Events
are likely to occur less frequently during summer, whereas the antici-
pated increase of rainfalls in spring and fall will likely alter debris-flow
activity during the shoulder seasons (March, April, November, Decem-
ber; e.g., Stoffel et al., 2008, 2011; Schneuwly-Bollschweiler and Stoffel,
2012; Toreti et al., 2013). The volume of entrained debris will crucially
depend on the stability and/or accelerations of permafrost bodies, as
destabilized rock glacier can lead to debris flowswithout historic prece-
dents in the future (Lugon and Stoffel, 2010; Stoffel, 2010). The frequen-
cy of rock slope failures is likely to increase in the future, as excessively
warm air temperatures, glacier shrinkage or downwasting, as well as
permafrost warming and thawing will affect and reduce rock slope
stability in the direction that adversely affects rock slope stability
(e.g., Ravanel and Deline, 2011; Allen and Huggel, 2013). Changes
in landslide activity in the Alps will likely depend on differences in ele-
vation. Above 1500 m asl, the projected decrease in snow depth in fu-
ture winters and springs will likely affect the frequency, number and
seasonality of landslide (re-) activations. In the French Alps (Lopez
Saez et al., 2013a,b) and in the Piemonte region (Tiranti et al., 2013),
21st century landslides have been demonstrated to occur more fre-
quently in early spring and tend to be triggered by moderate rainfalls,
but also to occur in smaller numbers. On the contrary, and in line with
recent observations, fall events, characterized by a large spatial 34 den-
sity of landslide occurrences, might become increasingly scarce (Stoffel
et al., 2014).

5. Conclusions and outlook

Climate change in themountain regions studied in the ACQWA pro-
ject is leading tomodifications in quantity and timingofwater resources
that have potentially significant ramifications forwater governance and
management. Water managers will need to adapt to potential increases
in runoff in late winter and autumn and potential decreases in spring
and late summer. Snow-melt is likely to take place earlier, with in-
creased melt in spring, but less change will be noticed at lower eleva-
tions compared to the higher ones. One of the strongest effects is the
significant reduction in the glacier melt contribution expected by the
middle of the 21st century, and a constriction of the period with high
glacier melt that will have repercussions for themanagement of hydro-
power reservoirs. At present, glaciers and snow pack provide a valuable
buffer of additional water during dry summers, which will be less and
less the case in the future. While increased glacial runoff from melting
glaciers will at first lead to surface runoff surpluses, continued reduc-
tions in glacier volume will eventually result in a decrease of summer
runoff. In some of the ACQWA case areas, particularly in the Andes
and the uplands of Central Asia, this phenomenon is already occurring
(Pellicciotti et al., 2014; Sorg et al., 2012).

The ACQWAproject has thus developed climate information for a set
of mountain regions downscaled to temporal and spatial scales that are
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intended to be of use to the challenges decision-makers face. ACQWA
policy work focused on three principal domains, namely the identifica-
tion of underlying water governance challenges in the mountain case-
study regions, assessing the adaptive capacity of these regions, and
identifying governance mechanisms to better implement adaptive and
integrative water resources management.

Climate change impacts in a number of basins dominated by snow
and icemelt thatwatermanagers anduserswill need to adapt to change
in the quantity and timing of water resources. This is not only relevant
to local and regional scales, but also to communities and economic
sectors downstreamwho are reliant on a range of goods frommountain
regions and their resources, in particular for electricity, water, andwater
storage.

A certain level of uncertainty has always existed in water resources
planning due to climate variability. Climate change represents an in-
crease in uncertainty, in part due to the speed andmagnitude of change
compared to earlier periods in the past. Water policy and management
frameworks need to copewith both existing and increasing levels of un-
certainty from climate variability and climate change impacts. While
principles in the management, conservation and adaptation of water
resources and ecosystems abound, there still remains a lack of clear
policy guidance on practical governance mechanisms and actionable
measures, especially in the context of mountain areas (Hill et al.,
in press-a,b).

Synergies or conflicts across different sectoral policies are particular-
ly relevant in mountain areas, where fragile ecosystems provide valu-
able economic services such as energy for hydropower, water towers
and natural storage systems of water, tourism uses, etc. Existing ten-
sions across economic sectors are likely to be further heightened by im-
pacts from climate change, underlining the need for not only integrative
but also adaptive water resources governance and management. There
is a clear need for a more integrated and comprehensive approach to
water use and management. In particular, beyond the conventional
water basin management perspective, there is a need to consider
other socio-economic factors and the manner in which water policies
interact with, or are affected by, other policies at the local, national,
and supra-national levels. It is indeed currently unclearwhether current
EU water policies are consistent with energy, agriculture, and other in-
dustrial policies.

Large integrating projects generally represent a step forward in fur-
thering our understanding of various complex processes and interac-
tions between environmental, economic, social, and technological
systems. The ACQWA project is no exception to this rule, and the five
years of research has indeed enabled a number of issues to be refined
and clarified, but has also identified problem areas that would need to
be addressed in future investigations of this nature. Among these, issues
pertaining to access to data for research purposes has often been identi-
fied as a key barrier to the successful outcome of a project. Policies
aimed at ensuring free and unrestricted access to data, especially
those generated by the numerous research projects that focus on issues
ofwater availability, quality andmanagement have been recommended
(Beniston et al., 2011, 2012).

Finally, many scientists working in large integrated projects high-
light a large gap between Science and Policy, as emphasized by
Beniston et al. (2012). This is certainly at least partly due to problems
of communicating in an appropriate manner the key research results
that would be of use to policy-relevant strategies. Awareness of this
problem is increasing within the EC and other policy institutions, and
hopefully this newmomentumwill be sustained over time so that con-
clusions from EU and other water-relevant projects will be widely in-
corporated into future policies at the local, national, and supra-
national levels. Ultimately, the implementation of guidelines, maybe
even an EU Directive, on the good governance of data (sharing) could
be envisaged as a possible framework, providing advice and general
rules on data formats and standards, data storage after project comple-
tion or the general terms of access.
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