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Abstract
Palaeohydrology is now recognized as a valuable approach to characterize the hazards posed by flooding.
Tree rings have emerged as an important source of evidence for paleohydrological studies, and, since the
1960s, have been used to document the occurrence of past floods. In this progress report we outline the
major contributions of tree-ring records to flood research. By reviewing the key advances in this field,
documenting different research trajectories, and highlighting recent developments, we make an argument in
favor of more extensive use of tree rings in flood analyses. We show how tree-ring data have been applied to
risk assessment and outline how the widespread distribution of flood-affected trees can be used to improve
the understanding of flood processes. In addition, we outline new approaches and future perspectives for the
inclusion of woody vegetation in hazard assessments, and end with new thematic perspectives.
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I Introduction
Floods are natural processes that provide
essential ecosystem services. They shape the
earth surface, provide rich soil, replenish sub-
surface water reservoirs, and play an integral
role in the ecology of riparian ecosystems.
However, extreme flood events can lead to
large economic and personal losses in societies
(Baker, 2008), and are responsible for several
of the costliest natural hazards worldwide.

According to the Intergovernmental Panel
on Climate Change (IPCC), the frequency or

intensity of heavy precipitation events has likely
increased in North America and Europe since
1950, and this increase is very likely to continue
through the 21st century as a result of the greater
water-holding capacity of a warmer atmosphere
(IPCC, 2012). Because intense precipitation
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events are important causes of floods, similar
trends in extreme flooding may be expected,
especially in small upland catchments where
floods arise from intense, convective and/or
orographically enhanced rainfall. Other areas
may experience increased extreme flooding
because of circulation changes that result in pro-
longed or recurring precipitation episodes that
saturate catchments, or an increase in rain-
on-snow or snowmelt flooding in response to
earlier and warmer springs. Floods, by their
very nature, are rare events and result from a
complex interplay between weather, climate,
and catchment-specific runoff characteristics.
Because of this, sufficiently long records are
required to evaluate trends or decipher a link
to climate change. Long records also provide
a more complete history of extreme events for
flood hazard assessment purposes. Therefore, a
strong need exists to augment systematic,
instrumental flood records with information
from both historical archives and indirect evi-
dence in the paleorecord (Baker, 2008).

Paleoflood hydrology deals with the recon-
struction of magnitudes and frequencies of
recent, past, or ancient ungauged floods and
combines indirect evidence and hydraulic meth-
ods as well as statistical techniques (Baker,
2008 and references therein; Benito et al.,
2003; House et al., 2002). The focus of paleo-
flood research is to augment information about
the flooding behavior of a catchment (Baker
et al., 2002; Sigafoos, 1964) and its relation to
hydroclimatology (Hirschboeck, 1988) by
including evidence of past floods derived from
geomorphic, botanical (Baker 1998), and/or
lichenometric indicators (Foulds et al., 2014).

An important source of indirect evidence of
floods is contained in the vegetation growing
on floodplains. The interaction between flood-
waters and trees can leave datable evidence of
past flood activity on tree stems and branches
and, consequently, in the growth-ring record
of disturbed trees. Floodplain vegetation can
therefore be used as a natural archive of past

floods, which can in turn be deciphered using
dendrogeomorphic techniques (Alestalo, 1971;
Stoffel and Corona, 2014; Stoffel et al., 2010).
Perhaps surprisingly, after the pioneering work
of Sigafoos (1961, 1964), botanical evidence
has not been used as often as other subsequently
recognized types of paleoflood evidence, e.g.
slackwater deposits (Kochel and Baker, 1982;
see a complete review in Baker, 2008).Yet there
is enormous potential for extracting information
about past flood events in tree-ring records, not
least because of the ubiquitous presence of trees
with discrete annual rings in temperate and bor-
eal locations (St George, 2014). A clear need
thus exists to review the current status of
flood-related studies in dendrogeomorphology
and to direct the attention of the paleohydrolo-
gic community to this useful indicator of past
flood activity.

This progress report (i) provides an exten-
sive review of recent trends and developments
of dendrogeomorphic research focusing on
past floods, (ii) describes methodologies used,
and (iii) outlines new approaches for flood
chronology and magnitude reconstructions of
unrecorded recent and more ancient floods.
This contribution also (iv) outlines the poten-
tial of trees to assist in flood hazard assessment
and (v) concludes with proposals for future
research directions.

II Review of flood studies using tree
rings
The potential of the tree-ring record for hydrolo-
gical studies (i.e. annual streamflow reconstruc-
tion) was recognized in the early decades of the
20th century by Hardman and Reil (1936).
However, it was not until the 1960s, only a few
years after the first formal description of paleo-
hydrology (Leopold and Miller, 1954), when
the links between riparian vegetation and flood
frequency were initially described by Sigafoos
(1961) along the Potomac River (Washington,
USA). Three years later, Sigafoos (1964)
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extended his observations and provided the first
description of botanical evidence of floods.
Through tree-ring dating of new sprouts grow-
ing from tilted and buried trees, as well as
through the study of injured trees (predomi-
nantly cambial scars), Sigafoos reconstructed
time series of flood events and concluded that
botanical evidence had a significant applied
value to hydrology. Subsequently, Helley and
LaMarche (1968, 1973) combined geomorphic
evidence and tree-ring information to analyze
floods over a period of 400 years in different
watersheds located in northern California.
Stewart and LaMarche (1967) compared pre-
and post-event changes in forests to investigate
flood characteristics. Harrison and Reid (1967)
used scarred trees to analyze flood frequency,
concluding that large numbers of scarred trees
meant substantial amounts of debris had been
transported during flood events and therefore
could be interpreted in terms of flow magnitude.
Everitt (1968) observed that cottonwood forest
dynamics were closely related to river discharge
and geomorphic changes in the floodplain. The
impact of ice jamming on tree scarring and its
role in the hydrology and hydraulics of flood
events was analyzed by Henoch (1973), Eggin-
ton and Day (1977), Smith and Reynolds
(1983), and Tardif and Bergeron (1997). Con-
temporaneously, several studies addressed
interactions between fluvial geomorphology
and riparian vegetation (Bedinger, 1971; Bell
and Johnson, 1974; Friedman et al., 2005;
Hupp, 1982; Hupp and Osterkamp, 1985,
1996; Malik, 2006; Scott et al., 1996).

Examining the anatomical responses of trees
to flood events, as well as information about the
flood tolerance of woody species (e.g. Gill,
1970) has led to further methodological
improvements in tree-ring interpretation and
allowed dating of past flood events with seaso-
nal precision. Yanosky (1983, 1984) used
vessel-size anatomical changes in Fraxinus sp.
samples to identify and reconstruct summer
floods in the Potomac River. He related these

anatomical changes to a disruption in growth
hormone transport along the stem caused by
anoxia associated with floodwater. Further
work along these lines focused on anatomical
responses to flood processes in other environ-
ments and tree species (Arbellay et al.,
2012ab; Astrade and Begin, 1997; Ballesteros-
Cánovas et al., 2010a, 2010b, 2015a;
Kozlowski, 1997; St George and Nielsen,
2003; St George et al., 2002; Stoffel et al.,
2012; Wertz et al., 2013; Yamamoto, 1992).
Collectively, these studies contributed to an
improved identification of past floods events
in continuous tree-ring records.

Flood chronologies also have been derived
from tree-ring analysis in ungauged mountain
areas. Zielonka et al. (2008) used scars on trees
to determine flash-flood activity in an ungauged
mountain catchment in the Tatra Mountains
(Poland). Ruiz-Villanueva et al. (2010) com-
bined the use of signal intensity with the geo-
morphic position of trees to obtain information
on past flash floods in a mountain stream in
Spain. Recently, Ballesteros-Cánovas et al.
(2015b) integrated forest management data, his-
torical archives, and long records of daily preci-
pitation to evaluate flash-flood activity and its
hydrometeorological triggers over the last cen-
tury. Therrell and Bialecki (2014) reconstructed
spring flooding on the Lower Mississippi River
based on anatomical tree-ring signatures of
floods. Similar tree-ring analyses have recon-
structed regional flash-flood activity in Central
Spain (Ruiz-Villanueva et al., 2013), the Tatra
Mountains (Ballesteros-Cánovas et al., 2015d),
and in the flysch Carpathians (Czech Republic;
Šilhán, 2015).

Beyond dating procedures, tree rings have
been successfully used for flood-magnitude
estimation in combination with paleohydraulic
techniques (Corriell, 2002; Gottesfeld, 1996;
McCord, 1990, 1996). Ballesteros-Cánovas
et al. (2011a, 2011b) combined two-
dimensional hydraulic models and scar heights
of specific (tree-ring dated) flood events to
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understand scar genesis and its relation to flood
peak discharge in two fluvial environments. It
was demonstrated that this information clearly
affects the estimated return periods of flood fre-
quency based on systematic records alone (Bal-
lesteros-Cánovas et al., 2011b) and that these
data can be used to assess epistemic uncertainty
in flood-risk assessments (Ballesteros-Cánovas
et al., 2013). The notion to extend the flow
series with new non-systematic source data
coming from trees led the researchers to test the
hypothesis that the inclination of tilted trees is
correlated with flood magnitude in different riv-
ers and tree species (Ballesteros-Cánovas et al.,
2015a). As such, tree-ring data have improved
knowledge about floods over large areas of Cen-
tral Spain, for which data have been very scarce
prior to analyses (Ballesteros-Cánovas et al.,
2012). Stoffel and Wilford (2012) and Dı́ez-
Herrero et al. (2013) provide summaries of
these recent studies. In this report, Table 1 pro-
vides an extensive list of previous experience in
paleoflood dating based on tree rings and Figure 1
indicates where paleoflood studies have been
undertaken.

III Synthesis of methodologies
1 Botanical evidence of past flood events
Dendrogeomorphic studies of floods are usually
based on the ‘‘process–event–response’’ con-
cept as defined by Shroder (1978). Under this
scheme, the ‘‘process’’ can be any kind of geo-
morphic agent (in this case, a flood), the
‘‘event’’ is represented by an externally visible
defect in the tree that occurred during a specific
flood-related incident, and the ‘‘response’’
refers to the anatomical imprint left by the flood
event in the tree-ring record. Paleoflood evi-
dence recorded by trees includes impact or abra-
sion scars, abnormal stem morphologies, eroded
roots, titled stems, standing dead trees, and ana-
tomical abnormalities caused by prolonged
inundation (Figure 2).

The distribution of riparian vegetation and
the determination of its age can provide insights
into flow dynamics and/or competence (Hupp
and Osterkamp, 1985, 1996; Stoffel and Wil-
ford, 2012). The intensity and timing of extreme
flows can be inferred when trees growing in
riparian areas receive external wounds on their
stems (flood scars) as a result of the impact of
rapidly moving flood debris. The partial
removal of bark and cambium tissues by such
wounds produces callus pads next to the open
wound and, depending on the species, may
result in several growth disturbances. In conifer
trees, the main indicators are decreased ring
widths along with a significant reduction in ear-
lywood tracheid size (Arbellay et al., 2012a,
2012b; Ballesteros-Cánovas et al., 2010a). In
Abies, Larix, Picea, or Pseudotsuga (Stoffel,
2008), tangential rows of traumatic resin ducts
(TRD) may be formed after a mechanical distur-
bance. Specifically, TRDs created around the
wound (Bollschweiler et al., 2008; Schneuwly
et al., 2009a, 2009b) are an excellent indicator
of a ‘‘hidden’’ scar and can be used as a dating
tool with seasonal precision (Stoffel and Benis-
ton, 2006). The responses of broadleaf trees to
flood disturbance varies between species, but
by far the most common response is a major
decrease in mean vessel area within rings
formed during flood conditions (Arbellay
et al., 2012b; Astrade and Bégin, 1997; Balles-
teros-Cánovas et al., 2010b; St George and
Nielsen, 2003; St. George et al., 2002; Wertz
et al., 2013). In some respects, scars are the most
useful botanical indicators of paleoflood informa-
tion. They can provide seasonal resolution for the
occurrence of a flood event as well as be used
as paleostage indicators (PSIs) in flow discharge
estimations (Ballesteros-Cánovas et al., 2011a,
2011b). Floods can also tilt trees when the uni-
lateral hydrodynamic pressure induced on the
stem partially exceeds stem elasticity and root-
plate system anchorage. As a consequence, both
the stem and the root-plate system can be
deformed by the flood. Trees will attempt to
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compensate for the tilting through the formation
of reaction wood (Timell, 1986) and eccentric
growth will become apparent in the tree-ring
series. The annual ring showing the initiation
of this response can be used to date the time of
occurrence of the flood event. In conifers, reac-
tion wood is formed on the tilted side of the stem
(so-called compression wood), whereas broad-
leaved trees form tension wood on the side fac-
ing the flow. Early work on tilted trees focused
on the growth of new sprouts as a result of re-
differentiation of meristem cells guided by pos-
itive phototropism. The age of such sprouts can
be determined and thus a minimum age of flood
events can be estimated (Sigafoos, 1964).

The impact of floating debris can lead to
crown breakage in shorter trees, which in turn
may lead to a significant decrease in phototrop-
ism rates and abrupt growth reductions in tree-
ring series (Sigafoos, 1964). In addition, tree
stems can be partly buried by sediments,
thereby limiting water uptake and nutrient sup-
ply, and result in an abrupt decrease in ring

widths (Friedman et al., 2005; Hupp 1988;
Kogelnig et al., 2013).

Root exposure occurs when stream banks are
eroded as a result of (bankfull) floods (Malik,
2006; Stoffel and Wilford, 2012). The exposure
of roots will lead to significant changes in wood
anatomy, mainly in the form of decreased early-
wood tracheid sizes and increased presence of
latewood cells (Stoffel et al., 2012, 2013).

Trees growing in endorheic areas linked to
fluvial systems may also document the exis-
tence of past floods, even in the absence of
externally inflicted evidence of such events. It
has been observed that prolonged anoxic condi-
tions of the root system can influence the pro-
duction and basipetale transport of growth
hormones (such as auxin) and induce changes
in wood anatomy (Wertz et al., 2013). In addi-
tion, tree species not physiologically adapted
to such conditions could die as a result of an
excess of the prolonged anoxic environment
produced by changes in the channel pattern in
response to a flood.

Figure 1. Map illustrating the locations of paleoflood studies based on tree-ring evidence.
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2 Field survey and sampling strategies
The first step required to evaluate the potential
for flood records from tree rings at a site is to
identify any flood-impacted trees that exhibit
common flood responses. Before compiling a
botanical record of flood damage, an under-
standing of flow dynamics and geomorphology
is needed to avoid including trees that may have
been damaged by processes unrelated to floods.
For instance, trees presenting elongated scars
might be caused by neighboring trees that fell
during a wind storm or by broken branches.

Field studies have shown that the position of
disturbed trees within a river cross-section can

play an important role in determining the relia-
bility of disturbance features for use in flood
dating and magnitude reconstruction. As a gen-
eral rule, disturbed trees located in exposed
positions on the banks of straight channel
reaches, or on the internal side of meander
bends, are preferred (Ballesteros-Cánovas
et al., 2011a, 2015c; Ballesteros-Cánovas, Stof-
fel, Czajka, et al., in review; Figure 3). A critical
inspection of the river’s reach based on the
researcher’s experience and the systematic anal-
ysis of sequences of past aerial photos can help
to evaluate the reliability of the site for the
extraction of flood information from tree-ring

Figure 2. Types of botanical evidence used to identify paleofloods using tree rings. (A) Trees can be injured
by the impact or abrasion of boulders or course woody debris transported by flood waters. (B) Flood debris
may break the main stem, causing trees do adopt unusual stem morphologies after regrowth. (C) Bank
erosion caused by flooding can cause tree roots to become sub-aerially exposed. (D) The hydraulic pressure
of floodwaters can tilt tree stems. (E) Changes in channel position or pattern can kill trees growing within the
riparian zone. (F) Flooding during the early growing season can cause inundated oak trees to form abnormal
anatomical structures within the newly formed wood.
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analysis. Once either all—or a representative
subset—of spatially distributed flood-affected
trees are identified, the sampling procedure can
proceed either through core sampling with an
increment borer (Grissino-Mayer, 2003) or the
destructive sampling of dead trees, branches, or
exposed roots for the preparation of cross-
sections. The locus of coring on the tree should
be determined by the nature of the disturbance
being sampled. For injured trees, complete tree-
ring series should be obtained as close as possible
to the injury (preferably in the upper portion of
the damaged area; see Schneuwly et al., 2009a,
2009b). For tilted trees, core sampling should
be done in the maximum curvature of the tilt.
For trees with broken crowns or stem mor-
phology anomalies, core sampling should be
done below the damaged area. The position
of each tree should be recorded with a GPS
device, measurements taken of the tree and
the disturbed feature (e.g. height of scar, tree
height, and diameter), and photographs made
of each tree. This information will be later
compiled to assist the researcher in tree-ring
record interpretation.

3 Flood chronologies using tree rings
One of the main goals of tree-ring flood studies
has been to extend chronologies of flood events
in ungauged or sparsely gauged catchments.
Early studies were usually based on a limited set
of growth anomalies in trees (e.g. Sigafoos,
1964), although over time the use of other typol-
ogies of growth anomalies has expanded (e.g.
Gottesfeld and Gottesfeld, 1990). In studies
of low-gradient fluvial rivers, flood chronol-
ogy reconstructions have focused on the occur-
rence of anomalies in anatomical structures
(described as ‘‘flood rings’’; St George and
Nielsen, 2002; St George et al., 2003; Wertz
et al., 2013), whereas in high-gradient streams,
scars on tree stems have been used predomi-
nantly (e.g. Ballesteros-Cánovas et al., 2010a,
2010b, 2011a; Yanosky and Jarrett, 2002;
Zielonka et al., 2008). Flood chronologies have
also been developed with other types of botani-
cal evidence. Malik (2006) and Stoffel et al.
(2012, 2013) used the timing of root exposure
to describe flood dynamics, while Casteller
et al. (2015) used growth anomalies in stems

Figure 3. Distribution along a river cross-section of: (i) the expected probability of finding flood-related
botanical evidence (red¼ highest, yellow¼ lowest), (ii) the areas most suitable for obtaining information on
extreme past events (blue), and (iii) the relative reliability of botanical evidence for use in peak discharge
reconstructions (green).

Ballesteros-Cánovas et al. 11
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and roots to reconstruct past floods and to dis-
tinguish between erosional and depositional
processes in a high-gradient stream of the Pata-
gonian Andes. What these studies all have in
common is that expert criteria, based on the
replication of disturbance in several trees, were
used to identify past floods (for details, see
Stoffel et al., 2010).

While the occurrence of various anomalies
related to floods certainly facilitates the identifi-
cation of past events, it also calls for a weighting
of different parameters and intensities, along
with reliable thresholds for objective event
definition. For example, Ruiz-Villanueva et al.
(2010) used different types of damage evidence,
the percentage of damaged trees (with respect to
all trees living at the time of sampling), and the
spatial distribution of these damaged trees for
event definition. Kogelnig-Mayer et al. (2011)
developed a weighted index (Wit), based on dif-
ferent intensities of tree reactions as well as the
percentage of damaged trees during an event.
Later, Schneuwly-Bollschweiler et al. (2013)
determined reliable thresholds for event defini-
tion using both the Wit index and geostatistical
analysis to address spatial connectivity between
the reacting trees. Based on this approach, Cor-
ona et al. (2012) were able to provide guidelines
for the sample size of trees needed to separate the
effects of tree-damaging geomorphic processes
from noise at different confidence levels. This
approach has been recently used to reconstruct
the longest annual resolved paleoflood chr-
onologies based on tree-ring analyses in the
Spanish Central System and Tatra Mountains
(Ballesteros-Cánovas et al., 2015b, 2015c;
Figure 4; Figure 5).

4 Peak discharge estimations from botanical
paleostage indicators
Paleoflood discharge estimations require the
resolution of a hydraulic equation with two
degrees of freedom. In this regard, the height
and location of a scar on a tree stem can be

assumed to represent a PSI of a past flood event,
and consequently can be used for paleoflood
discharge estimations (Jarrett, 1990; Jarrett and
England, 2002). In hydraulic equations, PSIs
can be used to reduce the number of unknown
parameters. According to Webb and Jarrett
(2002), different hydraulic procedures exist to
transform heights determined from PSIs to peak
discharge. The step-backwater approach is used
most extensively and is based on the conserva-
tion of energy between two cross-sections hav-
ing PSIs along a river reach. This method
estimates the hydraulic parameterization and
boundary conditions of past floods through an
iterative procedure. Water height is obtained
with general hydraulic equations (available in
conventional 1D or 2D hydraulic modeling soft-
ware), and peak discharge is then derived
through a trial-and-error approximation between
the heights defined by the PSI and modeled water
table profiles (Yanosky and Jarrett, 2002). The
critical-depth method has frequently been used
(for an explanation see Webb and Jarrett,
2002), although it requires the existence of PSIs
in a cross-section where the flow reaches the
minimum energy (from a geomorphological
point of view: upper section of waterfall or nar-
row constrictions). Uncertainties related to
flood-related topographic changes can be mini-
mized if analyses are performed in stable sec-
tions of the river (e.g. a bedrock channel)
where channel stability is guaranteed, at least in
the shorter to medium term (Ballesteros-Cánovas
et al., 2011a).

The reliability of peak discharge estimation
is linked to the relationship between maximum
flow or high water marks (HWM) and scar
height. In low-gradient streams, Smith and Rey-
nolds (1983) found the average difference
between ice-flood scar height along the Red
Deer River and the stage recorded by flow
gauge records for the same event was almost
1.37 m + 0.94 m. Gottesfeld (1996) observed
uncertainty around 0.19 + 0.03 m based on sin-
gle event study. Later, Ballesteros-Cánovas
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et al. (2011b) demonstrated that the uncertainty
related to scars inflicted by floating woody deb-
ris will increase with flood magnitude. In high-
gradient streams, Yanosky and Jarrett (2002)
suggested there are different levels of uncer-
tainty in high-gradient vs. low-gradient streams,
with deviations in high-gradient streams rang-
ing from as low as –0.6 m to as high as 1.5 m.
This range of uncertainties has been recently
confirmed by Ballesteros et al. (2011a) who
observed deviations above and below the
observed flow of between –0.8 to 1.3 m (Figure 6)
depending on whether the stage estimate was
determined from large or small scars.

New peak discharge reconstruction appro
aches based on tree-deformation energy have
been employed. Inspired by structural analysis,
Ballesteros-Cánovas et al. (2015a) studied the
relationship between tree tilting and flood mag-
nitude using 35 trees growing next to gauging

stations (Figure 7). The authors demonstrated
that fairly moderate to high correlations (up to
r¼ 0.65) exist between the degree of tilting and
minimum peak discharge, and concluded that
tilted trees may be used to provide additional
information about minimum peak discharges
during specific flood events.

IV The role of tree-ring studies in
flood hazard and risk assessment
The systematic incorporation of paleoflood data
into traditional flood-frequency analyses for risk
assessment is still challenging. One reason is that
paleoflood evidence is not well-preserved in all
catchments and where it is preserved data collec-
tion involves expert field-based inferences to
determine stage and other hydraulic attributes
of a flood. Another reason is that, when extreme
paleoflood-based discharges appear as outliers in

Figure 4. Example of a flood-chronology derived from flood-affected trees based on the Wit-index and the
number of growth disturbances (GD) (see Ballesteros-Cánovas et al., 2015b).

Figure 5. Reconstructed flooded years in Tatra Mountains (see Ballesteros-Cánovas et al., 2015c).
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Figure 6. Peak discharge reconstruction based on 2D hydraulic models and tree scar height for an intense
flow event that took place in Venero Claro, Spain (see Ballesteros-Cánovas et al., 2011a).

Figure 7. Schematic diagram of forces owing to hydrodynamic loads acting on a tree to tilt it during a flood
event (a detailed description can be found in Ballesteros-Cánovas et al., 2015a).
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an augmented flood time series, the issue of sta-
tionarity arises (see Baker 2008; Benito et al.,
2004; Klemes, 1986; Milly et al., 2008). Propo-
nents of integrating paleoflood information into
risk assessment argue that the landscape evi-
dence of the most extreme floods that have
occurred in the past is precisely what flood
hazard managers need to know. Yet a criticism
often raised is that under a changing climate, the
record of past floods will not be representative of
future flooding, hence emphasis should be placed
on the most recent portion of a flood record. In
response to this critique, studies of both historical
records (Macdonald and Black, 2010) and paleo-
flood records (Greenbaum et al., 2014) have
shown that multi-century to millennia-length
augmented flood records may have an advantage
over shorter, more recent instrumental records
because longer records incorporate a much larger
range of naturally occurring high and low flood
events and therefore result in more robust
flood-frequency estimates.

An illustration of this can be seen in paleo-
flood studies based on tree-ring analyses of the
Red River of the North, which frequently affects
communities in the American states of North
Dakota and Minnesota and the Canadian prov-
ince of Manitoba, that used ‘‘flood rings’’ to
extend the record of high-magnitude floods
back to the mid-17th century (St George and
Nielsen, 2003). These data constituted the first
physical evidence of the Red River flood of
1826, which destroyed the nascent Red River
Settlement and was previously known only
through eye-witness accounts (St George and
Rannie, 2003). Because the extended paleo-
flood record did not support fragmentary
accounts of an exceptionally large Red River
flood in 1776, this event has been omitted from
contemporary assessments of regional flood
hazards (Brooks and St George, 2015). The
paleoflood record for the Red River of the North
has also been cited by the United States Army
Corps of Engineers to argue that the hydrology
of this watershed is highly non-stationary, and is

prone to extended, multi-decadal periods of
higher or lower flood hazards because of cli-
mate and land-use change.

Important advances have also been made in
incorporating non-systematic data into flood-
frequency analysis for hazard assessment
(Benito et al., 2004; Kjeldsen et al., 2014;
Martins and Stedinger, 2001). Tree-ring-based
flood records may have advantages over
sediment-based paleoflood studies when using
these approaches because they can provide
annually resolved flood event dates within a
time frame that can be more easily referenced
to the systematic record. With a few exceptions,
tree-ring-based flood reconstructions generally
focus on the last few centuries (see Table 1); Bal-
lesteros-Cánovas et al. (2011b) demonstrated
that adding recent ungauged extreme flood
events dated by tree rings to the observed flood
record can lead to important impacts on flood-
percentiles (Figure 8) and proposed that these
changes in the flood frequency may be incorpo-
rated stochastically into a formal flood-risk
assessment (Ballesteros-Cánovas et al., 2013).
Similar impacts of the flood-percentiles have
also been recently reported for the Tatra Moun-
tains, where peak discharges based on the height
of dated scars and 2D-hydraulic models have
been used to extend the short and highly frag-
mented flow records during the last century
(Ballesteros-Cánovas et al., in review).

V Future directions
Compared to other sources of paleoflood infor-
mation, tree rings are distinguished by their
high temporal (annual or sub-annual) and spa-
tial resolution. Because of this detail, regional
paleoflood chronologies have the potential for
being able to identify the full range of natural
flooding variability in an area, potentially
linking the floods to both climatic drivers and
relevant catchment variables. To date, only
two comprehensive, regional reconstructions
based on paleofloods have been carried out
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(Ballesteros-Cánovas et al., 2015d; Šilhán,
2015); therefore, there is a great need for sim-
ilar efforts in other regions.

There is also great potential for broader
application of wood anatomy in paleoflood
research. Distorted wood anatomy caused by
prolonged inundation (lasting several weeks)
of the root and lower stem provides clear, unam-
biguous evidence of flooding that may be pre-
served for several centuries in live and dead
trees. Most paleoflood studies based on wood
anatomy have been conducted in the mid-
latitudes and have primarily focused on broad-
leaf deciduous trees (most commonly Quercus
spp.). Although this approach has not been
widely tested in the tropics, López et al.
(2014) showed that floodplain trees in the Dar-
ien Gap, Colombia, produce more vessels when
water levels rise, indicating that tree rings may
retain useful information about past hydrology
in these settings. Moreover, more detailed wood
analyses based on both stable isotopes and
chemistry elements are needed to corroborate
hypotheses about the quality and characteristics

of water flow condition during past flood regi-
mens (Ferrio et al., 2015; Pop et al., in press).

As mentioned, one of the sources of uncer-
tainty in the estimation of the magnitude of the
event lies in the lack of information on the exact
difference between HWM and flood scars or
other evidences. More post-event field recogni-
tion (e.g. Smith and Reynolds, 1983; Yanosky
and Jarrett, 2002 could contribute to defining a
range for these uncertainties in different geo-
morphologic environments. For instance, the
confirmation of the hypothesis linking scar
height and the top of levees in mountain streams
(Figure 9) will improve the efficiency of sam-
pling procedures and reduce methodological
uncertainty in the flow estimation using PSI
from trees.

Detailed knowledge about the interaction of
trees and geomorphic processes is still scarce
and there is a clear need for more fundamental
work as well as efforts that will promote syner-
gies between process modeling and the mechan-
istic study of trees and their root systems (e.g.
Lundström et al., 2008; Stokes et al., 2005,

Figure 8. Example of how exceedance probabilities, based on a censored flood series that include den-
drogeomorphic data, compare to peak discharge percentiles obtained from the gauged record alone at
Navaluenga, Spanish Central System (Ballesteros-Cánovas et al., 2011b). In this example, the inclusion of non-
systematic data resulted in an increase in flood magnitude estimates. Depending on the situation, however,
the inclusion of tree-ring data could either lead to an increase or a decrease in percentile estimations.
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among others). For example, process-based
studies on the utility of tilted trees and broken
stems for peak discharge estimation of paleo-
floods have yet to be fully explored. Analogous
to structural analysis, it may be possible to use
evidence of tree deflection and broken stem-
branches to provide estimates of the minimum
energy of the external load needed to produce
such impacts. It is expected that collaboration
between multidisciplinary researchers can
address questions like these and numerous other
aspects of the interaction between trees and
floods so that this information can be used to
increase knowledge about flooding and its
impacts in more areas and over longer periods
of time to improve flood-risk assessment.

The suitability of tree-ring based paleoflood
chronologies for practical purposes should be
more explicitly highlighted in future studies. A
clear need exists for a broader dissemination of
the value and potential of paleoflood studies for
the hydrological community. Paleoflood studies
can test the validity of uncertainty ranges in flood
estimations, and consequently improve the relia-
bility of risk assessments. Moreover, tree-ring
based flood information may also contribute to

a better understanding of floods through com-
parative hydrology across processes, places, and
time scales (see Blöschl, 2006), especially in
mountain environments, where models based
on physical-catchment parameters alone may not
explain the observed variability in flood pro-
cesses (Ballesteros-Cánovas et al., 2015c).

Although not focused specifically on floods,
another area in which tree-ring information is
used extensively in paleohydrology is to recon-
struct mean annual (or seasonal) streamflow
chronologies. Multi-century dendrochronologi-
cal streamflow reconstructions are invaluable
for evaluating long-term paleohydrologic varia-
bility and are now being used for water manage-
ment purposes, especially with respect to
evaluating the risk of extreme dry years and
extended droughts (see Meko and Woodhouse,
2011). Individual wet or dry years and multi-
year episodes of high and low flow can be
resolved well in streamflow reconstructions, but
short-duration individual flood peaks are imper-
ceptible. Because of this, linking paleoflood
evidence to annual streamflow reconstructions
in the same watershed is challenging. Redmond
at al. (2002) explored the link between tree-ring
reconstructions and paleofloods in western
United States with mixed results. In Arizona,
when viewed on centennial-length time scales,
an increase in paleoflood occurrence tended to
coincide with a high frequency of the most
extreme reconstructed annual streamflows, but
such a correspondence was not evident in the
short term on an interannual basis. Hirschboeck
(2013) used a ‘‘mechanistic’’ weather-based
approach to explore the degree to which flood
events were detectable in time series of
observed and reconstructed mean annual
streamflow and found that floods produced by
synoptic-scale winter storms could be detected,
but convective storm floods and tropical storm
floods could not. Future work along these lines
may find other ways to combine chronologies of
tree-ring-based flood information for use in risk
assessment and climate change studies.

Figure 9. Left: detail of scar on a Pinus sylvestris L.
stem from the Arroyo de los Puntes (Valsain, Spain).
Scar height matches with the maximum height of the
levee. Right: longitudinal levee limiting the spatial
distribution of the existing vegetation containing
evidence of the recent flash-flood event (Adygine
stream, Kyrgyzstan).
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Finally, more work is needed on the physical
causes of paleofloods. Klemes (1986) argued
that understanding the physical basis for the
occurrence of extreme floods of the past is nec-
essary for a meaningful interpretation of derived
flood probabilities (e.g. 100-year flood). Stan-
dard flood-frequency analysis assumes the flood
record is a stationary time series consisting of
independent, identically distributed random
variables, which, according to Klemes (1986),
‘‘strips all hydrologic context’’ from real-
world flood records, leaving them devoid of any
causal or physical meaning. An understanding of
the causes of past extreme floods also addresses
the relevance of paleoflood information for risk
assessment in a changing climate. Studies that
combine a thorough understanding of the hyd-
rometeorological causes of observed floods
in paleoflood-augmented systematic records
(Hirschboeck et al. 2000) with careful analysis
of the thermodynamic ocean-atmosphere driv-
ers of recent extreme floods (Trenberth et al.,
2015) may be the most advantageous way to
prepare realistic and robust flood-risk assess-
ments for an uncertain future.

VI Conclusions
Palaeohydrology is a scientific discipline that is
contributing important new data and approaches
to the study of hydrologic variability. In this
progress report we have provided an overview
of the many ways tree rings have been used in
identifying and analyzing palaeoflood events.
We have also outlined recent developments and
future challenges for extending the methodol-
ogy. Although the use of tree-ring records in
palaeohydrology is typically limited to the past
several centuries, the temporal and spatial reso-
lution these records provide is of crucial impor-
tance for understanding the distribution, timing,
and controls of recent and past events. In many
mountain areas, moreover, tree-ring records are
a unique source of information for understand-
ing the frequency and magnitude of past flood

processes. Consequently, this information can
be integrated into hazard and risk assessment
using innovative methods that extend our under-
standing of flood behavior and its variability in
ungauged regions and over periods much longer
than available in systematically observed records.
As tree-ring-based flood research expands to take
advantage of its unparalleled temporal and spatial
resolution when compared with other types of
paleorecords, and its ability to provide regional
connectivity between past flood events and sys-
tematically gauged flood time series, it has the
potential for providing exciting new insights into
interpreting the climatic drivers of extreme flood
events and consequently improving future predic-
tions of flood hazards.
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