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Progress Report

Effects of climate change on
mass movements in mountain
environments

Markus Stoffel
University of Bern and University of Geneva, Switzerland

Christian Huggel
University of Zurich and University of Geneva, Switzerland

Abstract
Changes in temperature and precipitation have a range of impacts, including change of glacier extent, extent
and duration of snow cover, and distribution and thermal properties of permafrost. Similarly, it is likely that
climatic changes affect frequency and magnitude of mass movements, such as shallow landslides, debris flows,
rock slope failures, or ice avalanches. However, so far changes in mass-movement activity can hardly be
detected in observational records. In this progress report we document the role of climate variability and
change on mass-movement processes in mountains through the description and analysis of selected, recent
mass movements where effects of global warming and the occurrence of heavy precipitation are thought to
have contributed to, or triggered, events. In addition, we assess possible effects of future climatic changes on
the incidence of mass-movement processes. The report concentrates on high-mountain systems, including
processes such as glacier downwasting and the formation of new ice-marginal lakes, glacier debuttressing and
the occurrence of rock slope instability, temperature increase and permafrost degradation, as well as on
changing sediment reservoirs and sediment supply, with a clear focus on studies from the European Alps.
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I Introduction

At present, the level of confidence is high

that the global average temperature of the past

few decades was warmer than any comparable

period during the last 2000 years (Mann et al.,

2008). Current evidence also suggests that tem-

peratures during the past 25 years were higher

than any period of comparable length since AD

900 for many, but not all, regions (Borgatti and

Soldati, 2012; IPCC, 2007). The Fourth Assess-

ment Report (AR4) of the Intergovernmental

Panel on Climate Change (IPCC) also reports

that most land regions of the world show an

increase of high temperatures for the past 50–

100 years, usually expressed as the 90th or 95th

percentile of the long-term record (Trenberth

et al., 2007). In Europe, the frequency of hot days

has almost tripled during the period 1880–2005

(Della-Marta et al., 2007), whereas Ding et al.

(2010) and Kunkel et al. (2010) found a strong

increase in the number of heat waves since the
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1960s for China and the USA. Based on

simulation runs forced with different greenhouse

gas emission scenarios, the IPCC (2007) con-

cludes that the rate of warming until the end of

the 21st century is likely to be faster than ever

recorded from historical or proxy records.

Although changes in average conditions may

have serious consequences by themselves, the

key impacts of climate change will be felt due

to changes in interannual climate variability and

weather extremes (see Borgatti and Soldati,

2012; IPCC, 2007). In high-mountain regions,

the evolution of mean and extreme temperatures

will likely be comparable to what has been

described above; however, studies specifically

focusing on trends at high elevations have not

been published so far.

The capacity of air to hold moisture is a func-

tion of temperature. As a consequence, global

warming is likely to lead to an overall greater

frequency and magnitude of heavy precipitation

events (Fowler and Hennessy, 1995). Despite

the fact that the projection of the occurrence

of atmospheric phenomena of relatively small

extent, such as storms, tend to suffer from

greater uncertainty than is the case for regional

atmospheric patterns, an increase in the fre-

quency and intensity of extreme precipitation

events has been identified in different sets of

observational data from several regions of the

World (IPCC, 2007; Figure 1a). For the future,

projections likewise suggest decreasing return

periods of extreme rainfall events (Christensen

and Christensen, 2003; Kharin et al., 2007;

Kyselỳ and Beranová, 2009; Orlowsky and

Seneviratne, 2012).

Changes in temperature and precipitation are

considered likely to have a range of secondary

effects, including on the extent of glaciers, the

distribution and duration of the snow cover,

and on the temperature and three-dimensional

distribution of permafrost. However, while

there is theoretical understanding for increased

mass-movement activity as a result of predicted

climate change in mountain environments,

changes in activity can hardly be detected in

observational records. In addition, uncertainty

remains considerable as a result of error mar-

gins inherent in scenario-driven global predic-

tions, and due to the lack of spatial resolution

of downscaled projections (Crozier, 2010). At

lower elevations, it has also been reported that

both the frequency and magnitude of landslides

could decrease as a result of climate change

(e.g. SE England, Collison et al., 2000; Dehn

et al., 2000).

Figure 1. Global warming is likely to lead to a greater frequency and magnitude of heavy precipitation events.
More and more intense rainfalls may trigger – among other processes – (a) flash floods and/or debris flows in
mountain areas such as in Ladakh (India; photo: Raphael Worni) or (b) overflow and breaching processes in
moraine-dammed lakes (Ventisquero Negro glacier, Bariloche, Argentina; Worni et al., 2012).
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This progress report therefore aims at

documenting the role of climate variability

and change on mass-movement processes in

mountainous regions through (1) the descrip-

tion and analysis of selected, recent mass

movements where effects of global warming

and the occurrence of heavy precipitation are

thought to have contributed to, or triggered,

events. We then address (2) possible effects

of future climatic changes – as projected by

Global Circulation Models (GCM) and

Regional Climate Model (RCM) runs – on the

occurrence of future mass-movement pro-

cesses, and (3) speculate about possible conse-

quences of climate and mass movements on

hazards and risks. Most examples illustrated

in this report are from the European Alps with

a clear focus on case studies from high-elevation

sites in Switzerland.

II Glacier downwasting and the
formation of new ice-marginal
lakes

One of the most obvious consequences of

climate change at high-elevation sites is the

widespread retreat and disintegration of glaciers

(e.g. Diolaiuti et al., 2011; Zemp et al., 2007).

The consequences for natural hazards following

increasingly rapid changes in glacier geometry

are multiple and include the formation of ice-

marginal lakes, ice avalanches and mass move-

ments originating from the recent debuttressing

of previously glacierized walls and hillslopes.

A prominent phenomenon associated with

glacier retreat and changes in glacier geometry

is the formation and growth of ice-marginal

lakes. Glacial lakes have been classified into

several types according to their position relative

to the glacier and the damming mechanism

(Clague and Evans, 2000; Richardson and

Reynolds, 2000; Roberts, 2005). The different

lake types are more or less frequent in different

regions of the world, depending on climatic,

glaciologic, topographic, geologic and other

factors. Hazards related to glacier retreat and the

formation of glacial lakes have been recognized

for several decades (Evans and Clague, 1994).

Indeed, severe disasters have occurred in the

past as a result of outburst floods from glacial

lakes in various high-mountain regions of

the world, including the Andes (Carey, 2005;

Hegglin and Huggel, 2008; Reynolds et al.,

1998; Worni et al., 2012; Figure 1b), the

Caucasus and Central Asia (Aizen et al., 2007;

Narama et al., 2010), Hindukush-Himalayas

(Richardson and Reynolds, 2000; Vuichard and

Zimmermann, 1987; Xin et al., 2008), North

America (Clague and Evans, 2000; Kershaw

et al., 2005) and the European Alps (Haeberli,

1983; Haeberli et al., 2001).

Rapid lake formation and growth that has

been accelerated in recent years is generally a

global phenomenon but has not been observed

everywhere with the same level of detail. Some

of the best documented recent developments are

from the Swiss Alps (Künzler et al., 2010;

Werder et al., 2010), such as the Trift, Lower

Grindelwald, Chüeboden and Plaine Morte

(Bernese Alps), Rhone (Valais Alps) and Palü

glaciers (Grisons Alps). These lakes have

formed within the past decade and are all

located at the terminus of glaciers where subgla-

cial topography has been overdeepened by the

glacier. At Trift glacier (Figure 2), positive

feedback processes, mainly related to the ther-

mal energy of water, accelerated glacier melt

and resulted in the formation and extensive

growth of the proglacial lake in only three years

(Kääb and Haeberli, 2001). Although the Trift

lake has become a major tourist attraction,

there is considerable concern about potential

hazards in case of a lake outburst that could

be triggered by ice avalanches from the ice fall

zone of Trift glacier or rockfalls following debut-

tressing of the steep lateral slopes (Dalban

Canassy et al., 2011).

An even more dramatic situation than at Trift

has developed at Lower Grindelwald glacier

(Figure 3a). This glacier has been in strong
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Figure 2. Comparison and evolution of the terminal part of Trift glacier in the Central Swiss Alps. (a) In 1948
massive glacier ice covered the glacially overdeepened trough (photo: Gesellschaft für ökologische Forschung).
(b) By 2006 the ice of the glacier terminus part had almost completely gone, leaving behind a large lake. Due to
potential flood hazards, the lake is regularly monitored.

Figure 3. (a) The large moraine at the glacial lake of Lower Grindelwald glacier that partly failed on 22 May
2009. The dashed line indicates the failed mass. The volume of the landslide was about 300,000 m3, with
100,000 m3 reaching the lake and generating an impact wave which, however, did not cause any dam overtop-
ping or flood downstream. The volume of the lake reached >2.5 � 106 m3 water in 2009 (image: gletscher-
see.ch). (b) Rockslide from the Eiger resulting from the debuttressing after the retreat of the Lower
Grindelwald glacier.
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retreat since its maximum glacier extension

during the Little Ice Age around 1860, with an

accelerated retreat since the 1980s (Zumbühl

et al., 2008). The glacier terminus is currently

located at the upper end of a gorge in a glacially

overdeepened trough which is constrained at the

downstream end by a rock slope. Downwasting

of the glacier in its terminal part resulted in a

loss of between 60 and more than 80 m of ice

thickness between 1985 and 2000 (Paul and

Haeberli, 2008). In recent years a glacial lake

started to form in the terminus area of the glacier

(Figure 3a). In 2004 and 2005, the lake had a

limited volume but has subsequently continu-

ously grown in the spring and early summer sea-

sons, resulting in lake volumes of 250,000 m3 in

2006, 1.3 million m3 in 2008 and 2.5 million m3

in May 2009 and the occurrence of a glacier-

lake outburst flood (GLOF) in 2008 (Werder

et al., 2010).

III Glacier debuttressing and the
occurrence of rock slope instability

The concentration of pronounced effects of gla-

cier downwasting and debuttressing on rock and

moraine slopes, permafrost degradation, rock-

falls and debris-flow activity, all interacting

with the formation and growth of glacier lakes

and further glacier decay, is often remarkable.

At Lower Grindelwald glacier, the rock slope

failure above the glacier terminus (Figure 3b)

is a textbook example of the effects of glacier

retreat, downwasting and associated debuttres-

sing effects on rock slope stability, and could

in fact serve as a model case for increasingly

destabilized future high-mountain environ-

ments. The response of a rock slope to glacier

downwasting has been reported to result in (1)

large rock avalanches, (2) large-scale, progres-

sive and slow rock mass deformation, and (3)

frequent rockfall events (Ballantyne, 2002). The

three modes of response are all consequences of

stress redistribution and release and may act in a

combined way. Rock slope failure thereby often

represents the result of slope steepening by gla-

cial erosion and unloading or debuttressing due

to glacier retreat (Augustinus, 1995; Holm et al.,

2004).

Examples that may be related to glacial over-

steepening or debuttressing include the Brenva

and Triolet rock avalanches in the Mont Blanc

massif in the 18th and 20th centuries (Deline,

2009), the Sherman glacier-rock avalanche in

1964 in Alaska (although earthquake-

triggered; Shreve, 1966), a significant number

of rock avalanches in the Karakorum (Hewitt,

1988, 2006, 2009) and several rock avalanches

in British Columbia, Canada (Geertsema et al.,

2006), to name just a few. The nature, timing

and scaling of rock slope failures due to glacial

debuttressing is strongly conditioned by geol-

ogy, in particular by lithology and structure,

i.e. rock mass strength, orientation and inclina-

tion of discontinuities, and density and depth

of joint networks. The timescale of failure and

its delayed reponse in relation to glacier retreat

has been much debated (Ballantyne, 2002).

Abele (1994), for instance, noted that almost all

large rockslides in the European Alps have been

favoured by glacial oversteepening and subse-

quent debuttressing, with some failures during

the Lateglacial but others occurring much later

during the Holocene (e.g. the 1991 Randa rock-

slide, Swiss Alps; Figure 4).

Recent advances in geochronology have

helped to better constrain the ages of many rock

slope failures in alpine environments (Ivy-Ochs

et al., 2009; Prager et al., 2008). The picture that

evolves from the different studies and approaches

is one of a varying response of rock slope failures

to glacial retreat and downwasting. Failures can

occur on timescales of 101 to 104 years, depend-

ing on the glaciation history, topography or geol-

ogy. Cruden and Hu (1993) proposed an

exhaustion model of temporal distribution of rock

slope failures which in essence suggests that the

number of failures exponentially decreases fol-

lowing deglaciation. Although the implicit time-

scale is of the order of 103 rather than 101
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years, the model is of importance in view of

hazards related to such rock slope failures. It can

be suggested that the current rapid glacier down-

wasting is likely to promote many rock slope

failures at rather short timescales, i.e. probably

on the order of decades. Such a timescale was also

observed during the recent rock slope failure at

Lower Grindelwald glacier where the failure

occurred as a response of glacier downwasting

in the past several decades. Although most such

failures may not reach inhabited areas, they are

of importance because of tourism and mountai-

neering activities (especially in the Alps), and

especially in consideration of impacts on exist-

ing or newly forming natural or artificial lakes.

The Lower Grindelwald glacier is just one

example, but similar processes and potential

hazards have been documented in other moun-

tain ranges as well (e.g. New Zealand; Kirkbride

and Warren, 1999).

IV Temperature increase and
permafrost degradation

Important effects of climate change on moun-

tain slope stability are furthermore related to

warming and thawing of permafrost. Perma-

frost exists in many steep rock slopes in high-

mountain environments and its degradation

due to global warming can affect slope stabi-

lity. Although this link might be intuitively

clear, the mechanisms of permafrost degrada-

tion and related slope stability are rather com-

plex, and the corresponding research field is

relatively young (Gruber and Haeberli, 2007).

As a result, many aspects and links remain

uncertain to date because of the complexity

of interacting processes.

Evidence comes from a number of recent

slope failures in permafrost areas (Figure 4),

including mass movements at scales that range

over several orders of magnitude from block

Figure 4. Image of the Grabengufer rock glacier and Dorfbach debris flow areas and the Grossgufer rock
slide at Randa. Solid lines indicate the rock glacier and rock slide scar, the dashed line the trajectory of the
Dorfbach debris flows, fuelled by the debris from the instabilities of the rapidly moving Grabengufer rock
glacier Source: Base image from Google Earth, October 2009
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and rockfall (Figure 5) to rock avalanches

(volumes of *102 to 107 m3), observed predo-

minantly in the Alps but also in other mountain

regions. Several studies have demonstrated that

the heat wave in summer 2003 and the related

excessive thawing of the active layer of perma-

frost bodies have resulted in an unusually high

number of rockfalls at high-elevation sites in the

European Alps (e.g. Gruber et al., 2004). In their

reconstruction of rockfall activity since AD

1600, Stoffel et al. (2005) showed that (1) the

temperature increase of the past *30 years has

resulted in increased rockfall activity, and (2)

the warm summers around AD 1720 created

conditions favourable for the release of large

rockfalls, comparable to those of 2003, at a

case-study site in the Valais Alps, possibly as

a result of unusually large active layer thawing.

Fischer et al. (2011) observed an increase of

large rockslide failures in the Swiss Alps and

neighbouring areas for the past two decades

as compared to the 20th century. Ravanel

and Deline (2011) corroborate these findings

in a more detailed, local study in the Mont

Blanc area.

Examples of large rock failures in the Alps

include the 2004 2.5�106 m3 rock avalanche

from Punta Thurwieser, Italy (Sosio et al.,

2008); the 1997 2–3�106 m3 Brenva rock ava-

lanche, Mont Blanc region, Italy (Barla et al.,

2000; Deline, 2009), the 2006 *106 m3 rock-

slides from Dents du Midi and Dent Blanche,

Switzerland, the 2007 rock avalanche from

Monte Rosa east face, Italy (Fischer and Huggel,

2008), and the December 2011 2–3�106 m3 rock

avalanche at Piz Cengalo, Val Bregaglia, in the

southern Swiss Alps. Many other regions have

also experienced major rock failures. In the Chu-

gach Mountains, Alaska, a *50�106 m3 large

rock and ice avalanche was released from Mt

Steller in 2005. Some 10–20�106 m3 of rock and

ice released from the NNE face of Dzhimaraih-

Khokh (Caucasus) entrained large parts of Kolka

glacier in 2002, resulting in a devastating

Figure 5. Block and rockfall from the terminus of the Grabengufer rock glacier into the debris flow initiation
zone of the Dorfbach torrent (see also Figure 4) Source: Photo by Florian Frank, August 2010
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>100�106 m3 ice-rock avalanche (Evans et al.,

2009; Haeberli et al., 2004; Huggel et al., 2005;

Kotlyakov et al., 2004; Figure 6).

Notably, climate change affects permafrost

in rock slopes on different spatial and temporal

scales. Knowledge of the temperature distribu-

tion and dynamics at depth, and related 3D

effects are in fact important in order to improve

our understanding on how climate change

affects slope stability. Noetzli et al. (2007) mod-

elled temperature and distribution of permafrost

in idealized 3D topography and demonstrated

that contemporary permafrost temperatures at

depth are significantly influenced by the climate

Figure 6. Reconstruction of the trajectory of the 2002 Kolka ice-rock avalanche in the Caucasus (Russia)
overlain on a QuickBird false colour infrared image acquired on 25 September 2002, five days after the ava-
lanche. A massive slope failure in glacier ice and bedrock in the northeast face of Dzhimarai-Khokh at about
4300 m asl impacted Kolka glacier. A large portion of Kolka glacier was then destabilized to form a high-speed
avalanche that travelled at maximum speeds of >300 km/h down the Genaldon valley. The avalanche was
dammed at the entrance of a gorge and formed a massive dam of about 130�106 m3 ice and rock debris.
Liquid parts of the avalanche travelled further downstream for about 15 km, devastated the valley and caused
a total of about 120 fatalities.
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of the past millennia, including the last Ice Age.

In the perspective of such timescales of heat dif-

fusion, the 20th-century warming may only

have reached a depth of some tens of metres

on steep slopes at high elevations (Haeberli et

al., 1997). Due to the large timelag of heat diffu-

sion, permafrost at greater depth may be present

where surface temperatures no longer favour its

occurrence (e.g. Noetzli et al., 2007; Wegmann

et al., 1998). As a consequence, potential effects

on slope stability by recent warming may cur-

rently have penetrated to depths of tens of

metres but will continue to reach increasingly

greater depths with future warming. An excep-

tion may be convective and advective heat dif-

fusion processes which can penetrate much

faster and may be particularly favoured by

discontinuity systems in bedrock (Gruber and

Haeberli, 2007). In an attempt to assess climate

change impacts on bedrock permafrost for the

next few decades, Salzmann et al. (2007)

coupled downscaled future climate projections

from RCMs with the thermal model developed

by Noetzli et al. (2007).

Although 3D thermal modelling of climate

change effects on mountain permafrost is an

important step forward, the processes through

which air temperatures influence slope stability

are not understood in sufficient detail. Davies et

al. (2001) demonstrated with laboratory tests that

thawing permafrost is accompanied by a reduc-

tion of shear strength in ice-filled clefts. The

resulting variations and the increase of hydro-

static pressure in previously ice-filled fractures

might therefore result in reduced slope stability.

Furthermore, slow growth of segregation ice

over long periods of time during permafrost

aggradation has been suggested to widen joints

in their frozen state (Murton et al., 2001; Sass,

2005), and thus contribute to a reduction in stabi-

lity when permafrost thaws under conditions of

warming (Harris et al., 2009).

According to Gruber and Haeberli (2007),

permafrost degradation in steep bedrock would

be effective through heat conduction, and by

advection of heat through water percolating in

fractures. As shown by Noetzli and Gruber

(2009) and Noetzli et al. (2007), degradation

by conduction is enhanced in convex topography

(i.e. ridges, spurs and peaks) due to warming

from several sides. Several of the aforemen-

tioned large rock slope failures occurred from

such ridge and spur situations. However, this

understanding based on theoretical considera-

tions and modelling assumes idealized homoge-

neous rock conditions without discontinuity

systems. In nature, rock joints are likely to

have a major influence on the rate and exten-

sion of permafrost degradation and slope stabi-

lity. Recent measurements in rock slopes of

the Matterhorn (Switzerland), for instance,

revealed the importance of melt water penetra-

tion into cleft systems as a driver of rock defor-

mation (Hasler, 2011).

V Changing sediment reservoirs
and sediment supply

In addition to future changes in temperature and

rainfall intensity, changes in sediment supply

and land use are important determinants for

mass-movement frequency and magnitude.

Recent observations at several sites in the Swiss

Alps indicate that sediment supply can in fact

change significantly as a result of permafrost

degradation of rock and scree slopes or mass

movements related to other processes (Huggel

et al., 2012).

While the average flow speed of rock glaciers

in the Valais Alps (Switzerland) was usually

below 1 m yr–1, ground and remote sensing based

monitoring has revealed acceleration of rock gla-

ciers surface flow-speed up to 4 m yr–1, and occa-

sionally up to 15 m yr–1, in recent years

(Delaloye et al., 2008; Roer et al., 2008; Figure

4). This phenomenon has been reported over

wide regions of the Alps, with morphological

features similar to those observed with land-

slides, such as transversal cracks, surface subsi-

dence in the upper part and rapid advance of
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the frontal part (Kääb et al., 2007; Roer et al.,

2008). Further field studies thereby indicate that

rock glacier surface speed is increasing with

increasing mean annual air temperature (Kääb

et al., 2007) and, as such, warming can exert indi-

rect control on debris-flow magnitude and fre-

quency (Stoffel et al., 2011).

At Ritigraben (Valais Alps), permafrost

thawing and accelerating flow speeds of rock

glaciers have been demonstrated to deliver more

sediment into the debris-flow channels under

current conditions than in the past (Lugon and

Stoffel, 2010). As a consequence, the volume

of the largest debris flows has risen by one order

of magnitude since the 1920s (Stoffel, 2010)

and is likely to further increase with ongoing

permafrost degradation (Stoffel and Beniston,

2006). The frequency of debris-flow events

was not, in contrast, directly affected by these

changes, as their release depends on meteoro-

logical triggers rather than sediment availabil-

ity. Triggering meteorological conditions

have been shown to occur less frequently under

current climatic conditions as compared to

those of the late 19th and early 20th centuries

(Stoffel et al., 2011).

Debris fans are a widespread landscape

element across the Alps formed by repeated

debris flows that were often up to an order-

of-magnitude larger than those observed today.

Present-day debris flows typically deposit mate-

rial on the fan rather than eroding any signifi-

cant amount of sediment of the fan. However,

recent debris-flow events have been observed

in the Swiss Alps that developed sufficient

erosive power to remobilize large amounts of

sediment on Holocene fans. A model case is the

August 2005 Rotlaui debris flow in Guttannen,

central Swiss Alps, which was the largest event

in Switzerland for the past 20 years. From a total

debris-flow volume of 500,000 m3,*300,000 m3

was entrained on the fan, increasing debris-flow

magnitude by a factor >2 due to erosion on the fan

(Figure 7). The Rotlaui debris flow initiated in

extensive sediment that was uncovered by the

recession of the local glacier during the past

decades. Permafrost contributed to hydrological

conditions favouring rapid surface runoff. As

observed with previous debris flows, glacier

retreat since the Little Ice Age and associated

uncovering of large amounts of sediment was

an important factor for particularly large debris

flows in the Alps. It can therefore be hypothe-

sized that poorly consolidated, exposed sedi-

ment (1) will become increasingly available

with future glacier recession (and possibly

from permafrost degradation as well), and (2)

could facilitate the generation of large debris

flows with little or no historical precedence.

As shown by the 2005 Rotlaui event, such large

debris flows could exceed a critical threshold

of shear stress when entering Holocene fans,

and transform deposition-dominated into

erosion-dominated flows.

VI Climate projections, mass-
movement perspectives

It has become clear that slope stability and

mass movements in high-mountain regions are

complex and highly interlinked systems. Sedi-

ment supply, as described above, can also be

controlled by climatic changes through pro-

cesses such as the increase of the active layer

of permafrost, increase of rock glacier flow

speed, or aggradation of rock debris from desta-

bilized rock flanks. At the same time, with the

ongoing and eventually complete downwasting

of glaciers, certain sources of sediment may

become depleted or disconnected from down-

slope systems; an increase of vegetation cover

at higher altitudes could reduce erosion rates

and create more stable conditions in the long

term. In this case, conditions might improve and

imminent hazards could decrease at certain

locations on a multi-decadal timescale.

Over decadal timescales, topography can be

affected significantly as a result of shrinking

glaciers and slope failures (Geertsema et al.,

2006; Holm et al., 2004; Paul and Haeberli,
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2008). Temperature and precipitation are

likely to change as well, but on much shorter

timescales, presumably decadal. In its conclu-

sions, the AR4 (IPCC, 2007) stated that both

heavy precipitation and extreme temperature

events (heat waves) will very likely increase

in frequency in the course of the 21st century,

although uncertainties are larger for precipita-

tion than for temperature (Meehl et al., 2007).

Post-AR4 studies confirm these statements,

Figure 7. View of the catchment of the 2005 Rotlaui debris flow, at Guttannen, central Swiss Alps. (A) Zone
of initiation consisting of an import body of partly frozen glacial sediment. (B1) Initial zone of debris flow ero-
sion in glacial sediment. (B2) Debris flow transport zone with repeated channel erosion. (B3) Deep erosion
on the Holocene fan, amounting to about 300,000 m3 additional sediment. (B4) Deposition of debris flow
material on the lower part of the fan, with runups on the opposite valley flank. (C) Destruction of the Grimsel
highway and obstruction of the Aare river by debris flow material. Source: Base image from GoogleEarth,
October 2009
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provide details on several regions of the world

and increase the robustness of AR4 conclusions

by using a larger suite of GCMs and RCMs

(Hawkins and Sutton, 2010; Orlowsky and

Seneviratne, 2012). In a global study, Kharin

et al. (2007) conclude that the return times of

extreme precipitation events will be reduced by

a factor of two by the mid-21st century as com-

pared to the late 20th century. Incorporating the

effect of topography is absolutely crucial for rea-

listic predictions of temporal and spatial changes

of precipitation patterns in mountain regions, but

clearly more work is needed to enhance climate

models and to improve the spatial resolution of

model runs using statistical and dynamical down-

scaling for extreme precipitation.

According to results from statistical down-

scaling of GCMs for North America, a strong

increase of heavy precipitation events has

been projected for the second half of the 21st

century as compared to the second half of the

20th century over the south and central USA,

but a decrease seems likely to occur over the

Canadian prairies (Wang and Zhang, 2008).

Precipitation extremes tend to increase also

over northern and central Europe, yet with a

possible decrease in southern Europe (Beniston

et al., 2007; Schmidli et al., 2007). The trend of

increasing precipitation extremes is also consis-

tent with studies that focus on areas in Europe

with complex topography (Kyselỳ and Bera-

nová, 2009). Similarly, for most of southeastern

South America and western Amazonia an

increase of the intensity of extreme precipita-

tion is projected for the period 2071–2100

(Marengo et al., 2009).

Uncertainties concerning seasonal, climate

variability in the future are large but some ten-

dencies and model consensus are nevertheless

discernible: in northern and parts of central

Europe an increase in extreme precipitation is

projected in winter; whereas for summer the

models give a less consistent picture of more fre-

quent heavy rainfall (Christensen et al., 2007;

Kyselỳ and Beranová, 2009; Orlowsky and

Seneviratne, 2012). This is also in agreement

with studies from the UK where a number of

models indicate an increase of extreme precipita-

tion in winter, spring and autumn/fall (Buonomo

et al., 2007; Fowler and Ekström, 2009).

As far as future extreme temperatures are

concerned, post-IPCC AR4 studies are mostly

consistent with the conclusions of AR4: periods

with temperatures in the uppermost percentiles

are likely to be more intense, more frequent and

longer lasting in a future warmer climate

(Meehl et al., 2007). Daily minimum tempera-

tures are projected to increase faster than daily

maxima, which will supposedly lead to a

decrease of the diurnal temperature range and

could enhance weathering processes in moun-

tain rock slopes. Considerable progress has been

made in regional climate modelling for Europe

since AR4 (IPCC, 2007), namely through the

ENSEMBLES project (van der Linden and

Mitchell, 2009) and the application of a large

number of RCMs over Europe (25 or 50 km hor-

izontal resolution; 1951–2050, some until 2100)

with identical boundary conditions and the

Special Report on Emission Scenarios (SRES)

A1B (Nakicenovic and Swart, 2000). In one of

the very few studies focusing on temperature

extremes in high mountains, the ENSEMBLES

climate model data was used to analyse the fre-

quency of 5-day to 30-day events of very warm

temperatures with clear melting conditions

(above 5�C) at high-elevation sites (Huggel

et al., 2010). It was found that such unusually

warm events will be 1.5–4 times more fre-

quent, in some models even up to 10 times

more frequent, by 2050 as compared to 1951–

2000. Rock slopes and steep glaciers in cold

high-mountain regions are probably among the

systems most sensitive to temperature changes,

including extreme temperatures, with potential

implications for slope stability, e.g. through the

production of unusually large amounts of

liquid melt water.

Projections of a gradual increase of (mean)

temperature is typically more robust than that
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of temperature extremes, although the magni-

tude of change also bears a considerable range

of uncertainty, depending on the climate models

and emission scenarios that are applied. In

Europe, mean temperatures are likely to

increase more than on the global average, with

warming likely to be strongest in winter over

northern Europe and in summer over southern

Europe (Christensen et al., 2007). Over the

Alps, a primary region in terms of mass move-

ments, warming may reach about þ2 + 1�C
by 2050, and þ2.5–3 + 1.5�C by 2070 as

compared to 1990 (OcCC, 2007). In the Andes,

temperatures may rise by 3.5�C + 1.5�C by

2071–2100 with respect to the 1961–1990 refer-

ence period (Urrutia and Vuille, 2009). Similar

projections were made for North America, with

a warming of about 3–4�C of the annual mean

temperature 2080–2099 versus 1980–1999, but

with potential extreme warming over Alaska of

up to 10�C in winter (Christensen et al., 2007).

Changes in evaporation are also relevant for

mass movement activity. A recent study analys-

ing the complete IPCC AR4 (CMIP3) ensem-

ble of GCM simulations for the end of the

21st century indicates generally increasing

evaporation, whereas precipitation minus eva-

poration is found to be positive for the northern

latitudes and negative for mid-latitude regions

(Orlowsky and Seneviratne, 2012).

The effect of warming by several degrees

Celsius on mass-movement activity is complex,

involving multiple feedback processes that are

difficult to predict. A limited number of studies

made attempts to link different slope stability

models (semi-empirical, physically based) with

downscaled climate model output (Buma and

Dehn, 2000; Collison et al., 2000; Schmidt and

Glade, 2003). Uncertainties of climate models

with respect to future rainfall intensities (Meehl

et al., 2007), as well as site-specific conditions,

appear to represent dominant aspects for the

direction of change in mass-movement fre-

quency. A reduction of shallow landslide activ-

ity is possible, as Bathurst et al. (2005) have

found for a catchment in the southern Alps of

Italy for scenarios of warmer and drier climate

towards the end of the 21st century. Malet et

al. (2007) assessed potential changes of slope

stability for a site in the French Alps towards the

end of the 21st century, using downscaled cli-

mate model output in conjunction with a hydro-

logical and a slope stability model, and found

to some extent an important reduction of slope

stability, with effects from strongly reduced

snow cover. Another approach was used by

Jakob and Lambert (2009) in their assessment

of changes in short- and long-term rainfall con-

ditions towards the end of the 21st century from

a number of climate models. The authors then

applied a statistical relation of rainfall duration

and intensity for landslide-triggering storms to

analyse potential future changes in landslide

frequency. A similar approach was used by

Jomelli et al. (2009) in the Massif des Ecrins

(French Alps) to analyse changes in the fre-

quency of occurrence of debris flows by the end

of the 21st century.

VII Future mass movements:
implications for hazards and need
for further research

The effects of changing mean and extreme tem-

perature and precipitation are likely to be wide-

spread and to influence both the occurrence (in

terms of temporal frequency) and the magnitude

of future mass movements in mountain regions

around the globe. Despite uncertainties, slopes

currently underlain by degrading permafrost

will probably become less stable at progres-

sively higher altitudes with ongoing climate

change (Harris et al., 2001, 2009). One can also

speculate that the probability of rock instability

and the incidence of large (>106 m3) rockfalls

will increase in a warming climate (Holm et

al., 2004; Huggel, 2009). Glacier downwasting

will result in the formation of further ice-

marginal lakes and subsequent problems of gla-

cier lake outburst floods (GLOFs; Frey et al.,
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2010; Worni et al., 2012). On steep slopes,

warming firn and ice temperatures may result

in new sites of ice falls and ice avalanches

(Harris et al., 2009). Provided that sediment

supply is not a limiting factor, future debris

flows have the potential to become larger in the

future than they were in the past, but not neces-

sarily more frequent and clearly conditioned by

local site conditions (Bollschweiler and Stoffel,

2010; Jomelli et al., 2009; Stoffel et al., 2008;

Schneuwly-Bollschweiler and Stoffel, 2012).

The generation of cascading processes at high

elevations might increase and result in chain

reactions which are often difficult to predict

(e.g. the impact of ice-rock avalanches into gla-

cier lakes in the Cordillera Blanca, Peru, and

other regions, with subsequent downstream

flooding; Carey et al., 2012; Hubbard et al.,

2005; Kershaw et al., 2005).

Recent developments at high-elevation sites

have shown clearly that the sensitivity of moun-

tain and hillslope systems to climate change is

likely to be acute, and that events beyond histor-

ical experience will continue to occur as climate

change continues (Goodfellow and Boelhouwers,

2012). Despite the lack of preserved analogues

and although palaeo-evidence for the link

between mass movements and climate may be

fraught with many questions of interpretation

(Lang et al., 1999; Stoffel et al., 2010), the inclu-

sion of palaeo-records has the capacity to inte-

grate signals over a wide area and to employ a

broad range of supporting proxy information

(Crozier, 2010). In this perspective, observable

evidence from the far and near past points to an

increase in mass-movement activity and a major

mobilization of sediment under warming and/or

wetter conditions (Sletten et al., 2003; Stoffel,

2010; Stoffel and Beniston, 2006).

Recent mass-movement processes originating

from high-elevation sites have been observed at

sites with no or little historical precedence –

e.g. Rotlaui (Figure 7) and Spreitlaui debris

flows, Switzerland – and have destroyed critical

transport and energy infrastructure. The risk of

damaging events is often particularly high in

developing countries where both population and

agriculture pressure on land resources lead to the

exploitation of unstable slopes.

An improved understanding of the intrinsic

complexity of mass-movement processes at

high-elevation sites, cascades of processes and

their relationships with, and dependency on,

climate variability and change is crucially

important in planning appropriate and prospec-

tive measures to reduce the negative impacts of

future events. This progress report has tried to

shed light on recent developments and state-

of-the-art knowledge on possible effects of cli-

mate change on the occurrence and intensity

of potential future mass movements. The contri-

bution has also outlined the broad spectrum of

recent research and the large suite of case-

study results available in the research field, but

also illustrated clearly that, despite all progress

made in climate–mass movement studies,

many questions yet need to be addressed in

greater detail to overcome considerable gaps

in knowledge which continue to exist in this

challenging field of research.
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